IDEAS home Printed from https://ideas.repec.org/p/tky/fseres/2014cf944.html
   My bibliography  Save this paper

Conditional AIC under Covariate Shift with Application to Small Area Prediction

Author

Listed:
  • Yuki Kawakubo

    (Graduate School of Economics, The University of Tokyo)

  • Shonosuke Sugasawa

    (Graduate School of Economics, The University of Tokyo)

  • Tatsuya Kubokawa

    (Faculty of Economics, The University of Tokyo)

Abstract

In this paper, we consider the problem of selecting explanatory variables of fixed effects in linear mixed models under covariate shift, which is the situation that the values of covariates in the predictive model are different from those in the observed model. We construct a variable selection criterion based on the conditional Akaike information introduced by Vaida and Blanchard (2005) and the proposed criterion is generalization of the conditional Akaike information criterion (conditional AIC) in terms of covariate shift. We especially focus on covariate shift in small area prediction and show usefulness of the proposed criterion through simulation studies.

Suggested Citation

  • Yuki Kawakubo & Shonosuke Sugasawa & Tatsuya Kubokawa, 2014. "Conditional AIC under Covariate Shift with Application to Small Area Prediction," CIRJE F-Series CIRJE-F-944, CIRJE, Faculty of Economics, University of Tokyo.
  • Handle: RePEc:tky:fseres:2014cf944
    as

    Download full text from publisher

    File URL: http://www.cirje.e.u-tokyo.ac.jp/research/dp/2014/2014cf944.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kubokawa, Tatsuya & Nagashima, Bui, 2012. "Parametric bootstrap methods for bias correction in linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 106(C), pages 1-16.
    2. Yu, Dalei & Yau, Kelvin K.W., 2012. "Conditional Akaike information criterion for generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 629-644.
    3. Kawakubo, Yuki & Kubokawa, Tatsuya, 2014. "Modified conditional AIC in linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 44-56.
    4. Kubokawa, Tatsuya, 2011. "Conditional and unconditional methods for selecting variables in linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 641-660, March.
    5. Srivastava, Muni S. & Kubokawa, Tatsuya, 2010. "Conditional information criteria for selecting variables in linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 1970-1980, October.
    6. Yu, Dalei & Zhang, Xinyu & Yau, Kelvin K.W., 2013. "Information based model selection criteria for generalized linear mixed models with unknown variance component parameters," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 245-262.
    7. M. C. Donohue & R. Overholser & R. Xu & F. Vaida, 2011. "Conditional Akaike information under generalized linear and proportional hazards mixed models," Biometrika, Biometrika Trust, vol. 98(3), pages 685-700.
    8. Hua Liang & Hulin Wu & Guohua Zou, 2008. "A note on conditional aic for linear mixed-effects models," Biometrika, Biometrika Trust, vol. 95(3), pages 773-778.
    9. Sonja Greven & Thomas Kneib, 2010. "On the behaviour of marginal and conditional AIC in linear mixed models," Biometrika, Biometrika Trust, vol. 97(4), pages 773-789.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simona Buscemi & Antonella Plaia, 2020. "Model selection in linear mixed-effect models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 529-575, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kawakubo, Yuki & Kubokawa, Tatsuya, 2014. "Modified conditional AIC in linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 44-56.
    2. Yu, Dalei & Zhang, Xinyu & Yau, Kelvin K.W., 2013. "Information based model selection criteria for generalized linear mixed models with unknown variance component parameters," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 245-262.
    3. Simona Buscemi & Antonella Plaia, 2020. "Model selection in linear mixed-effect models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 529-575, December.
    4. Yuki Kawakubo & Tatsuya Kubokawa, 2013. "Modfiied Conditional AIC in Linear Mixed Models," CIRJE F-Series CIRJE-F-895, CIRJE, Faculty of Economics, University of Tokyo.
    5. Braun, Julia & Sabanés Bové, Daniel & Held, Leonhard, 2014. "Choice of generalized linear mixed models using predictive crossvalidation," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 190-202.
    6. Overholser, Rosanna & Xu, Ronghui, 2014. "Effective degrees of freedom and its application to conditional AIC for linear mixed-effects models with correlated error structures," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 160-170.
    7. Dalei Yu, 2016. "Conditional Akaike Information Criteria for a Class of Poisson Mixture Models with Random Effects," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(4), pages 1214-1235, December.
    8. Craiu, Radu V. & Duchesne, Thierry, 2018. "A scalable and efficient covariate selection criterion for mixed effects regression models with unknown random effects structure," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 154-161.
    9. Simon N. Wood & Natalya Pya & Benjamin Säfken, 2016. "Smoothing Parameter and Model Selection for General Smooth Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1548-1563, October.
    10. Chan, Moon-tong & Yu, Dalei & Yau, Kelvin K.W., 2015. "Multilevel cumulative logistic regression model with random effects: Application to British social attitudes panel survey data," Computational Statistics & Data Analysis, Elsevier, vol. 88(C), pages 173-186.
    11. Yu, Dalei & Yau, Kelvin K.W., 2012. "Conditional Akaike information criterion for generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 629-644.
    12. Kruse, René-Marcel & Silbersdorff, Alexander & Säfken, Benjamin, 2022. "Model averaging for linear mixed models via augmented Lagrangian," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
    13. Kubokawa, Tatsuya & Nagashima, Bui, 2012. "Parametric bootstrap methods for bias correction in linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 106(C), pages 1-16.
    14. Masahiro Kojima & Tatsuya Kubokawa, 2013. "Bartlett Adjustments for Hypothesis Testing in Linear Models with General Error Covariance Matrices," CIRJE F-Series CIRJE-F-884, CIRJE, Faculty of Economics, University of Tokyo.
    15. Benjamin Säfken & Thomas Kneib, 2020. "Conditional covariance penalties for mixed models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(3), pages 990-1010, September.
    16. Philipp F. M. Baumann & Enzo Rossi & Alexander Volkmann, 2020. "What Drives Inflation and How: Evidence from Additive Mixed Models Selected by cAIC," Papers 2006.06274, arXiv.org, revised Aug 2022.
    17. Jonathan Bradley & Noel Cressie & Tao Shi, 2015. "Comparing and selecting spatial predictors using local criteria," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(1), pages 1-28, March.
    18. Øystein Sørensen & Anders M. Fjell & Kristine B. Walhovd, 2023. "Longitudinal Modeling of Age-Dependent Latent Traits with Generalized Additive Latent and Mixed Models," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 456-486, June.
    19. Xinyu Zhang & Hua Liang & Anna Liu & David Ruppert & Guohua Zou, 2016. "Selection Strategy for Covariance Structure of Random Effects in Linear Mixed-effects Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 275-291, March.
    20. Hemant Kulkarni & Jayabrata Biswas & Kiranmoy Das, 2019. "A joint quantile regression model for multiple longitudinal outcomes," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(4), pages 453-473, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tky:fseres:2014cf944. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CIRJE administrative office (email available below). General contact details of provider: https://edirc.repec.org/data/ritokjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.