IDEAS home Printed from https://ideas.repec.org/p/ris/fcnwpa/2016_052.html
   My bibliography  Save this paper

Optimal Expansion of a Hydrogen Storage System for Wind Power: A Real Options Analysis

Author

Listed:

Abstract

This paper presents a real options-based techno-economic analysis of a hydrogen-based wind energy storage system (H2-WESS) deployed adjacent to a nearshore wind farm in northern Germany. The H2-WESS can be used to produce and store hydrogen when feed-in management takes place, in order to avoid the shutdown of wind turbines during times of excess electricity supply, or when the spot market electricity price falls below the estimated (efficiency-adjusted) market price of hydrogen. Moreover, an H2-WESS can provide negative minute reserve capacity. The modular design of the H2-WESS gives an investor the option to expand the capacity and gradually adapt to changing market conditions. The comprehensive and novel simulation model considers all relevant volatile inputs, such as stochastic wind conditions, feed-in management events, prices, and minute reserve calls. By means of a Monte Carlo simulation, annual revenues and their volatility are computed with a view on projected technology improvements until 2030. Based on the simulation results, a binomial real options pricing model is used to design four interdependent binominal trees and to evaluate a Bermuda-type compound expansion option. The decision trees, in which the investor can choose the maximum of the option to either upgrade the H2-WESS to the next expansion stage or to keep the real option alive, feature 390 time steps and 76,050 decision nodes each. Each compound decision takes the option of a smaller expansion stage explicitly into account. The compound expansion option to invest in a 5, 10, 15, or 20 MW H2-WESS has a 15-year expiration time and is found to have a value of about €2 million, compared to the net present value of a 5 MW H-WESS of about €-2.45 million. We conclude from the real options analysis that for a realistic valuation of modular energy projects subject to various uncertainties it is crucial to incorporate the value of managerial flexibility that is influenced. Due to the modular design, and in contrast to conventional power plants, the flexibility of the H2-WESS comprises many specific options.

Suggested Citation

  • Franzen, Stefan & Madlener, Reinhard, 2016. "Optimal Expansion of a Hydrogen Storage System for Wind Power: A Real Options Analysis," FCN Working Papers 52/2016, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
  • Handle: RePEc:ris:fcnwpa:2016_052
    as

    Download full text from publisher

    File URL: http://www.fcn.eonerc.rwth-aachen.de/global/show_document.asp?id=aaaaaaaaaawepym
    File Function: Full text
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hendrik Schmitz and Reinhard Madlener, 2020. "Direct and Indirect Energy Rebound Effects in German Households: A Linearized Almost Ideal Demand System Approach," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5), pages 89-118.
    2. Frieling, Julius & Madlener, Reinhard, 2017. "Fueling the US Economy: Energy as a Production Factor from the Great Depression until Today," FCN Working Papers 2/2017, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    3. Glensk, Barbara & Madlener, Reinhard, 2017. "Evaluating the Enhanced Flexibility of Lignite-Fired Power Plants: A Real Options Analysis," FCN Working Papers 107/2016, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    4. Biggins, Flora & Kataria, Mohit & Roberts, Diarmid & Brown, Dr Solomon, 2022. "Green hydrogen investments: Investigating the option to wait," Energy, Elsevier, vol. 241(C).
    5. Höwer, Daniel & Oberst, Christian A. & Madlener, Reinhard, 2017. "Regionalization Heuristic to Map Spatial Heterogeneity of Macroeconomic Impacts: The Case of the Green Energy Transition in NRW," FCN Working Papers 13/2017, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN), revised 01 Feb 2019.

    More about this item

    Keywords

    Wind power; Hydrogen; Storage system; Compound expansion option; Monte Carlo simulation; Germany;
    All these keywords.

    JEL classification:

    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:fcnwpa:2016_052. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Hendrik Schmitz (email available below). General contact details of provider: https://edirc.repec.org/data/fceonde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.