IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/88761.html
   My bibliography  Save this paper

On the formulation of the problem of optimal control of production parameters using a two-level model of the production process

Author

Listed:
  • Pihnastyi, Oleh
  • Parachnevych, Oksana

Abstract

Using a statistical approach, widespread in natural sciences, a two-level model to control the parameters of the flow line production system has been built. The state of the system is given by the amounts of sets of the objects of labour. The state of the subject of labour is given by a point in the phase space. The function of the distribution of objects of labour by the state is introduced and the kinetic equation for the distribution function is written. Now we have closed system of dynamical equations for parameters of flow production line. The null and the first moments of the distribution function of labour objects in terms of the state characterize the magnitude of inter-operational stocks and the rate of processing of labour objects from operations of the technological route and are the main parameters of the management of the production line. The limiting transition from the kinetic description of the state of objects of labour to the stream description of the processing of objects of labour is accomplished. Integration of the kinetic equation by the states of the objects of labour made it possible to construct a closed system of balance equations for the parameters of the production line. The task of optimal control of the flow parameters of the production line has been set. The balance equations for the moments of the distribution function of objects of labour by states determine the constraint equations in the control problem

Suggested Citation

  • Pihnastyi, Oleh & Parachnevych, Oksana, 2018. "On the formulation of the problem of optimal control of production parameters using a two-level model of the production process," MPRA Paper 88761, University Library of Munich, Germany, revised 01 Sep 2018.
  • Handle: RePEc:pra:mprapa:88761
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/88761/1/MPRA_paper_88761.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dieter Armbruster & Daniel E. Marthaler & Christian Ringhofer & Karl Kempf & Tae-Chang Jo, 2006. "A Continuum Model for a Re-entrant Factory," Operations Research, INFORMS, vol. 54(5), pages 933-950, October.
    2. Pihnastyi, Oleh, 2017. "Analytical methods for designing technological trajectories of the object of labour in a phase space of states," MPRA Paper 91737, University Library of Munich, Germany, revised 2017.
    3. Pihnastyi, Oleh & Korsun, Roman, 2016. "The construction a kinetic equation of the production process," MPRA Paper 92073, University Library of Munich, Germany, revised 19 Mar 2016.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Helbing, Dirk & Armbruster, Dieter & Mikhailov, Alexander S. & Lefeber, Erjen, 2006. "Information and material flows in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(1), pages 1-1.
    2. Klug, Florian, 2014. "Modelling and analysis of synchronised material flow with fluid dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 404-417.
    3. Apostolos Kotsialos, 2010. "A hydrodynamic modelling framework for production networks," Computational Management Science, Springer, vol. 7(1), pages 61-83, January.
    4. Yang, Feng & Liu, Jingang, 2012. "Simulation-based transfer function modeling for transient analysis of general queueing systems," European Journal of Operational Research, Elsevier, vol. 223(1), pages 150-166.
    5. Herty, M. & Ringhofer, C., 2007. "Optimization for supply chain models with policies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 651-664.
    6. Pihnastyi, Oleh & Yemelianova, Daria & Lysytsia, Dmytro, 2020. "Using PDE-model and system dynamics model for describing multi-operation production lines," MPRA Paper 103975, University Library of Munich, Germany, revised 31 Aug 2020.
    7. Пигнастый, Олег & Ходусов, Валерий, 2017. "Диффузионное Описание Производственного Процесса [Diffusion description of the production process]," MPRA Paper 89250, University Library of Munich, Germany, revised 01 Nov 2017.
    8. Пигнастый, Олег, 2015. "О Выводе Кинетического Уравнения Производственного Процесса [Derivation of kinetic equations of the production process]," MPRA Paper 93529, University Library of Munich, Germany, revised 07 Aug 2015.
    9. Tanmay Sarkar, 2016. "A numerical study on a nonlinear conservation law model pertaining to manufacturing system," Indian Journal of Pure and Applied Mathematics, Springer, vol. 47(4), pages 655-671, December.
    10. Mapundi Banda & Michael Herty, 2012. "Adjoint IMEX-based schemes for control problems governed by hyperbolic conservation laws," Computational Optimization and Applications, Springer, vol. 51(2), pages 909-930, March.
    11. Pihnastyi, Oleh & Korsun, Roman, 2016. "The construction a kinetic equation of the production process," MPRA Paper 92073, University Library of Munich, Germany, revised 19 Mar 2016.
    12. Пигнастый, Олег, 2018. "Синтез Программного Управления Операционными Параметрами Поточной Линии [Synthesis of program control of operational parameters of a production line]," MPRA Paper 102418, University Library of Munich, Germany, revised 25 May 2018.
    13. Pihnastyi, Oleh & Ivanovska, Olha, 2021. "Using a two-level dynamic PDE model to synchronize the performance of technological equipment of a production line," MPRA Paper 111138, University Library of Munich, Germany, revised Sep 2021.
    14. Pihnastyi, Oleh & Khodusov, Valery, 2019. "The optimal control problem for output material flow on a conveyor belt with input accumulating bunker," MPRA Paper 95928, University Library of Munich, Germany, revised 07 Jan 2019.
    15. Пигнастый, Олег, 2014. "Основы Статистической Теории Построения Континуальных Моделей Производственных Линий [Fundamentals Of The Statistical Theory Of The Construction Of Continuum Models Of Production Lines]," MPRA Paper 95240, University Library of Munich, Germany, revised 20 Aug 2014.
    16. Dong, Ming & He, Fenglan, 2012. "A new continuous model for multiple re-entrant manufacturing systems," European Journal of Operational Research, Elsevier, vol. 223(3), pages 659-668.

    More about this item

    Keywords

    Stability of mass production processes functioning; production systems; flow production line; enterprise; business process; basic product; technological chain; BP distribution function;
    All these keywords.

    JEL classification:

    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:88761. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.