IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v223y2012i3p659-668.html
   My bibliography  Save this article

A new continuous model for multiple re-entrant manufacturing systems

Author

Listed:
  • Dong, Ming
  • He, Fenglan

Abstract

The semiconductor manufacturing systems that involve a large number of products and many steps can be modeled through conservation laws for a continuous density variable on production processes. In this paper, the basic partial differential equation (PDE) models for single-product re-entrant manufacturing systems are proposed first. However, through the validation of numerical examples, the basic continuous models do not perform well for single-product re-entrant systems. Then, a new state equation that takes into account the re-entrant degree of a product is introduced to improve the basic continuous models. The applicability of the modified continuous model is illustrated through numerical examples. The influence of the influx variation on the outflux is also discussed. With the changes of influx, the outflux has a reverse phenomenon. Based on the new state equation, the continuous model for multi-product re-entrant systems with different priorities is established, and an example is provided to illustrate the applicability of the new continuous model.

Suggested Citation

  • Dong, Ming & He, Fenglan, 2012. "A new continuous model for multiple re-entrant manufacturing systems," European Journal of Operational Research, Elsevier, vol. 223(3), pages 659-668.
  • Handle: RePEc:eee:ejores:v:223:y:2012:i:3:p:659-668
    DOI: 10.1016/j.ejor.2012.07.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221712005231
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2012.07.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dieter Armbruster & Daniel E. Marthaler & Christian Ringhofer & Karl Kempf & Tae-Chang Jo, 2006. "A Continuum Model for a Re-entrant Factory," Operations Research, INFORMS, vol. 54(5), pages 933-950, October.
    2. J. G. Dai & G. Weiss, 1996. "Stability and Instability of Fluid Models for Reentrant Lines," Mathematics of Operations Research, INFORMS, vol. 21(1), pages 115-134, February.
    3. Zou, Y. & Kevrekidis, I.G. & Armbruster, D., 2006. "Multiscale analysis of re-entrant production lines: An equation-free approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(1), pages 1-13.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Helbing, Dirk & Armbruster, Dieter & Mikhailov, Alexander S. & Lefeber, Erjen, 2006. "Information and material flows in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(1), pages 1-1.
    2. Klug, Florian, 2014. "Modelling and analysis of synchronised material flow with fluid dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 404-417.
    3. Legros, Benjamin & Jouini, Oualid & Akşin, O. Zeynep & Koole, Ger, 2020. "Front-office multitasking between service encounters and back-office tasks," European Journal of Operational Research, Elsevier, vol. 287(3), pages 946-963.
    4. Zhao, Yaping & Xu, Xiaoyun & Li, Haidong & Liu, Yanni, 2016. "Prioritized customer order scheduling to maximize throughput," European Journal of Operational Research, Elsevier, vol. 255(2), pages 345-356.
    5. Apostolos Kotsialos, 2010. "A hydrodynamic modelling framework for production networks," Computational Management Science, Springer, vol. 7(1), pages 61-83, January.
    6. Пигнастый, Олег & Ходусов, Валерий, 2017. "Диффузионное Описание Производственного Процесса [Diffusion description of the production process]," MPRA Paper 89250, University Library of Munich, Germany, revised 01 Nov 2017.
    7. Pihnastyi, Oleh & Parachnevych, Oksana, 2018. "On the formulation of the problem of optimal control of production parameters using a two-level model of the production process," MPRA Paper 88761, University Library of Munich, Germany, revised 01 Sep 2018.
    8. Kevin D. Glazebrook & José Niño-Mora, 1997. "Assessing an intuitive condition for stability under a range of traffic conditions via a generalised Lu-Kumar network," Economics Working Papers 429, Department of Economics and Business, Universitat Pompeu Fabra, revised Jan 2000.
    9. Heng-Qing Ye & Jihong Ou & Xue-Ming Yuan, 2005. "Stability of Data Networks: Stationary and Bursty Models," Operations Research, INFORMS, vol. 53(1), pages 107-125, February.
    10. Hong Chen & Hanqin Zhang, 2000. "Stability of Multiclass Queueing Networks Under Priority Service Disciplines," Operations Research, INFORMS, vol. 48(1), pages 26-37, February.
    11. Koole, Ger & Pot, Auke, 2006. "Workload minimization in re-entrant lines," European Journal of Operational Research, Elsevier, vol. 174(1), pages 216-233, October.
    12. A. B. Dieker & J. Shin, 2013. "From Local to Global Stability in Stochastic Processing Networks Through Quadratic Lyapunov Functions," Mathematics of Operations Research, INFORMS, vol. 38(4), pages 638-664, November.
    13. Пигнастый, Олег, 2015. "О Выводе Кинетического Уравнения Производственного Процесса [Derivation of kinetic equations of the production process]," MPRA Paper 93529, University Library of Munich, Germany, revised 07 Aug 2015.
    14. J. G. Dai & J. H. Vande Vate, 2000. "The Stability of Two-Station Multitype Fluid Networks," Operations Research, INFORMS, vol. 48(5), pages 721-744, October.
    15. Yang, Feng & Liu, Jingang, 2012. "Simulation-based transfer function modeling for transient analysis of general queueing systems," European Journal of Operational Research, Elsevier, vol. 223(1), pages 150-166.
    16. Pihnastyi, Oleh & Bondarenko, Kristina, 2016. "About the problem of selecting models for production line," MPRA Paper 91235, University Library of Munich, Germany, revised 07 Jan 2018.
    17. Tanmay Sarkar, 2016. "A numerical study on a nonlinear conservation law model pertaining to manufacturing system," Indian Journal of Pure and Applied Mathematics, Springer, vol. 47(4), pages 655-671, December.
    18. Herty, M. & Ringhofer, C., 2007. "Optimization for supply chain models with policies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 651-664.
    19. Dieter Armbruster & Daniel E. Marthaler & Christian Ringhofer & Karl Kempf & Tae-Chang Jo, 2006. "A Continuum Model for a Re-entrant Factory," Operations Research, INFORMS, vol. 54(5), pages 933-950, October.
    20. Mapundi Banda & Michael Herty, 2012. "Adjoint IMEX-based schemes for control problems governed by hyperbolic conservation laws," Computational Optimization and Applications, Springer, vol. 51(2), pages 909-930, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:223:y:2012:i:3:p:659-668. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.