Advanced Search
MyIDEAS: Login to save this paper or follow this series

Solving Daniel Bernoulli's St Petersburg Paradox: The Paradox which is not and never was


Author Info

  • Vivian, Robert William


It has been accepted for over 270 years that the expected monetary value (EMV)of the St Petersburg game is infinite. Accepting this leads to a paradox; no reasonable person is prepared to pay the predicted large sum to play the game but will only pay, comparatively speaking, a very moderate amount. This paradox was 'solved' using cardinal utility. This article demonstrates that the EMV of the St Petersburg game is a function of the number ofgames played and is infmite only when an infinite number of games is played. Generally, the EMV is a very moderate amount, even when a large number of games is played. It is of the same order as people are prepared to offer to play the game. There is thus no paradox. Cardinal utility is not required to explain the behaviour of the reasonable person offering to play the game.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL:
File Function: original version
Download Restriction: no

Bibliographic Info

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 5233.

as in new window
Date of creation: 2003
Date of revision: 2003
Publication status: Published in South African Journal of Economic & Management Sciences NS6.2(2003): pp. 331-345
Handle: RePEc:pra:mprapa:5233

Contact details of provider:
Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page:
More information through EDIRC

Related research

Keywords: St Petersburg paradox; St Petersburg game; expected utility; decision theory;

Find related papers by JEL classification:


References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Epps, Thomas W, 1978. "Financial Risk and the St. Petersburg Paradox: Comment," Journal of Finance, American Finance Association, vol. 33(5), pages 1455-56, December.
  2. Brito, D. L., 1975. "Becker's theory of the allocation of time and the St. Petersburg Paradox," Journal of Economic Theory, Elsevier, vol. 10(1), pages 123-126, February.
  3. Chris Starmer, 2000. "Developments in Non-expected Utility Theory: The Hunt for a Descriptive Theory of Choice under Risk," Journal of Economic Literature, American Economic Association, vol. 38(2), pages 332-382, June.
  4. Machina, Mark J, 1987. "Choice under Uncertainty: Problems Solved and Unsolved," Journal of Economic Perspectives, American Economic Association, vol. 1(1), pages 121-54, Summer.
  5. Samuelson, Paul A, 1977. "St. Petersburg Paradoxes: Defanged, Dissected, and Historically Described," Journal of Economic Literature, American Economic Association, vol. 15(1), pages 24-55, March.
  6. Matthew Rabin & Richard H. Thaler, 2001. "Anomalies: Risk Aversion," Journal of Economic Perspectives, American Economic Association, vol. 15(1), pages 219-232, Winter.
  7. Shapley, Lloyd S., 1977. "The St. Petersburg paradox: A con games?," Journal of Economic Theory, Elsevier, vol. 14(2), pages 439-442, April.
Full references (including those not matched with items on IDEAS)


Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Benjamin Y. Hayden & Michael L. Platt, 2009. "The mean, the median, and the St. Petersburg paradox," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 4(4), pages 256-272, June.
  2. Vivian, Robert William, 2006. "Considering the Pasadena "Paradox"," MPRA Paper 5232, University Library of Munich, Germany, revised Jun 2006.
  3. Vivian, Robert William, 2008. "Considering the Harmonic Sequence "Paradox"," MPRA Paper 21216, University Library of Munich, Germany.


This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.


Access and download statistics


When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:5233. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.