Advanced Search
MyIDEAS: Login

Minimization of Keane’s Bump Function by the Repulsive Particle Swarm and the Differential Evolution Methods

Contents:

Author Info

  • Mishra, SK

Abstract

Keane’s bump function is considered as a standard benchmark for nonlinear constrained optimization. It is highly multi-modal and its optimum is located at the non-linear constrained boundary. The true minimum of this function is, perhaps, unknown. We intend in this paper to optimize Keane’s function of different dimensions (2 to 100) by the Repulsive Particle Swarm and Differential Evolution methods. The DE optimization program has gone a long way to obtain the optimum results. However, the Repulsive Particle Swarm optimization has faltered. We have also conjectured that the values of the decision variables diminish with the increasing index values and they form two distinct clusters with almost equal number of members. These regularities indicate whether the function could attain a minimum or (at least) has reached close to the minimum. We have used this conjecture to incorporate ordering of variable values before evalution of the function and its optimization at every trial. As a result, the performance of DE as well as the RPS has improved significantly. Our results are comparable with the best results available in the literature on optimization of Keane function. Our two findings are notable: (i) Keane’s envisaged min(f) = -0.835 for 50-dimensional problem is realizable; (ii) Liu-Lewis’ min(f) = -0.84421 for 200-dimensional problem is grossly sub-optimal.Computer programs (written by us in Fortran) are available on request.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://mpra.ub.uni-muenchen.de/3098/
File Function: original version
Download Restriction: no

Bibliographic Info

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 3098.

as in new window
Length:
Date of creation: 01 May 2007
Date of revision: 05 May 2007
Handle: RePEc:pra:mprapa:3098

Contact details of provider:
Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: http://mpra.ub.uni-muenchen.de
More information through EDIRC

Related research

Keywords: Nonlinear; constrained; global optimization; repulsive particle swarm; differential evolution; Fortran; computer program; Hybrid; Genetic algorithms;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Sudhanshu K Mishra, 2013. "Global Optimization of Some Difficult Benchmark Functions by Host-Parasite Coevolutionary Algorithm," Economics Bulletin, AccessEcon, vol. 33(1), pages 1-18.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:3098. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.