: Login to save this paper or follow this series

# The nearest correlation matrix problem: Solution by differential evolution method of global optimization

• Mishra, SK

## Abstract

Correlation matrices have many applications, particularly in marketing and financial economics - such as in risk management, option pricing and to forecast demand for a group of products in order to realize savings by properly managing inventories, etc. Various methods have been proposed by different authors to solve the nearest correlation matrix problem by majorization, hypersphere decomposition, semi-definite programming, or geometric programming, etc. In this paper we propose to obtain the nearest valid correlation matrix by the differential evaluation method of global optimization. We may draw some conclusions from the exercise in this paper. First, the ‘nearest correlation matrix problem may be solved satisfactorily by the evolutionary algorithm like the differential evolution method/Particle Swarm Optimizer. Other methods such as the Particle Swarm method also may be used. Secondly, these methods are easily amenable to choice of the norm to minimize. Absolute, Frobenius or Chebyshev norm may easily be used. Thirdly, the ‘complete the correlation matrix problem’ can be solved (in a limited sense) by these methods. Fourthly, one may easily opt for weighted norm or un-weighted norm minimization. Fifthly, minimization of absolute norm to obtain nearest correlation matrices appears to give better results. In solving the nearest correlation matrix problem the resulting valid correlation matrices are often near-singular and thus they are on the borderline of semi-negativity. One finds difficulty in rounding off their elements even at 6th or 7th places after decimal, without running the risk of making the rounded off matrix negative definite. Such matrices are, therefore, difficult to handle. It is possible to obtain more robust positive definite valid correlation matrices by constraining the determinant (the product of eigenvalues) of the resulting correlation matrix to take on a value significantly larger than zero. But this can be done only at the cost of a compromise on the criterion of ‘nearness.’ The method proposed by us does it very well.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://mpra.ub.uni-muenchen.de/2760/
File Function: original version

File URL: http://mpra.ub.uni-muenchen.de/44809/
File Function: revised version

## Bibliographic Info

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 2760.

as in new window
Length:
Date of revision: 17 Apr 2007
Handle: RePEc:pra:mprapa:2760

Contact details of provider:
Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: http://mpra.ub.uni-muenchen.de

## Related research

Keywords: Correlation matrix; product moment; nearest; complete; positive semi-definite; majorization; hypersphere decomposition; semi-definite programming; geometric programming; Particle Swarm; Differential Evolution; Particle Swarm Optimization; Global Optimization; risk management; option pricing; financial economics; marketing; computer program; Fortran; norm; absolute; maximum; Frobenius; Chebyshev; Euclidean;

Find related papers by JEL classification:

• C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
• G00 - Financial Economics - - General - - - General
• C88 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Other Computer Software
• C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
• G19 - Financial Economics - - General Financial Markets - - - Other

This paper has been announced in the following NEP Reports:

## References

No references listed on IDEAS
You can help add them by filling out this form.

## Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
1. Mishra, SK, 2009. "A note on positive semi-definiteness of some non-pearsonian correlation matrices," MPRA Paper 15725, University Library of Munich, Germany.

## Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

## Corrections

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:2760. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.