Advanced Search
MyIDEAS: Login to save this paper or follow this series

A note on positive semi-definiteness of some non-pearsonian correlation matrices

Contents:

Author Info

  • Mishra, SK

Abstract

The Pearsonian coefficient of correlation as a measure of association between two variates is highly prone to the deleterious effects of outlier observations (in data). Statisticians have proposed a number of formulas to obtain robust measures of correlation that are considered to be less affected by errors of observation, perturbation or presence of outliers. Spearman’s rho, Blomqvist’s signum, Bradley’s absolute r and Shevlyakov’s median correlation are some of such robust measures of correlation. However, in many applications, correlation matrices that satisfy the criterion of positive semi-definiteness are required. Our investigation finds that while Spearman’s rho, Blomqvist’s signum and Bradley’s absolute r make positive semi-definite correlation matrices, Shevlyakov’s median correlation very often fails to do that. The use of correlation matrices based on Shevlyakov’s formula, therefore, is problematic.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://mpra.ub.uni-muenchen.de/15725/
File Function: original version
Download Restriction: no

Bibliographic Info

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 15725.

as in new window
Length:
Date of creation: 14 Jun 2009
Date of revision:
Handle: RePEc:pra:mprapa:15725

Contact details of provider:
Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: http://mpra.ub.uni-muenchen.de
More information through EDIRC

Related research

Keywords: Robust correlation; outliers; Spearman’s rho; Blomqvist’s signum; Bradley’s absolute correlation; Shevlyakov’s median correlation; positive semi-definite matrix; fortran 77; computer program;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Mishra, SK, 2007. "The nearest correlation matrix problem: Solution by differential evolution method of global optimization," MPRA Paper 2760, University Library of Munich, Germany, revised 17 Apr 2007.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:15725. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.