IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/zpxtm.html
   My bibliography  Save this paper

Open Science for Computer Simulation

Author

Listed:
  • Monks, Thomas
  • Harper, Alison
  • Anagnostou, Anastasia
  • Taylor, Simon J.E.

Abstract

This paper provides a framework for conceptualising levels of open science and open working within computer modelling and simulation. We aim to support researchers to share their models and working so that others are free to use, reproduce, adapt and build upon, and re-share their work. We introduce a six level framework of increasing complexity: not open, open access, open artefacts, open models, open environment and open infrastructure. For each we provide practical advice on what aspects of open science researchers must consider, what options are available to them, and what challenges they will need to overcome. We illustrate our open science framework using a stylised discrete-event simulation model. All code used in this paper is available, cloud executable and reusable under an MIT license.

Suggested Citation

  • Monks, Thomas & Harper, Alison & Anagnostou, Anastasia & Taylor, Simon J.E., 2022. "Open Science for Computer Simulation," OSF Preprints zpxtm, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:zpxtm
    DOI: 10.31219/osf.io/zpxtm
    as

    Download full text from publisher

    File URL: https://osf.io/download/62cff4e1c79a4c1a2e9e5a54/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/zpxtm?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Thomas Monks & Christine S. M. Currie & Bhakti Stephan Onggo & Stewart Robinson & Martin Kunc & Simon J. E. Taylor, 2019. "Strengthening the reporting of empirical simulation studies: Introducing the STRESS guidelines," Journal of Simulation, Taylor & Francis Journals, vol. 13(1), pages 55-67, January.
    2. M.L. Penn & T. Monks & A.A. Kazmierska & M.R.A.R. Alkoheji, 2020. "Towards generic modelling of hospital wards: Reuse and redevelopment of simple models," Journal of Simulation, Taylor & Francis Journals, vol. 14(2), pages 107-118, April.
    3. Barry L. Nelson, 2013. "Foundations and Methods of Stochastic Simulation," International Series in Operations Research and Management Science, Springer, edition 127, number 978-1-4614-6160-9, September.
    4. Marco A. Janssen, 2017. "The Practice of Archiving Model Code of Agent-Based Models," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 20(1), pages 1-2.
    5. Volker Grimm & Steven F. Railsback & Christian E. Vincenot & Uta Berger & Cara Gallagher & Donald L. DeAngelis & Bruce Edmonds & Jiaqi Ge & Jarl Giske & Jürgen Groeneveld & Alice S.A. Johnston & Alex, 2020. "The ODD Protocol for Describing Agent-Based and Other Simulation Models: A Second Update to Improve Clarity, Replication, and Structural Realism," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 23(2), pages 1-7.
    6. Grimm, Volker & Berger, Uta & DeAngelis, Donald L. & Polhill, J. Gary & Giske, Jarl & Railsback, Steven F., 2010. "The ODD protocol: A review and first update," Ecological Modelling, Elsevier, vol. 221(23), pages 2760-2768.
    7. Emiliano Alvarez & Gabriel Brida & Silvia London, 2020. "Agent Based Models and Simulation in Social Sciences: A bibliometric review," Working Papers 26, Red Nacional de Investigadores en Economía (RedNIE).
    8. Moallemi, Enayat A. & Elsawah, Sondoss & Ryan, Michael J., 2020. "Strengthening ‘good’ modelling practices in robust decision support: A reporting guideline for combining multiple model-based methods," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 175(C), pages 3-24.
    9. Michael Allen & Amir Bhanji & Jonas Willemsen & Steven Dudfield & Stuart Logan & Thomas Monks, 2020. "A simulation modelling toolkit for organising outpatient dialysis services during the COVID-19 pandemic," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-13, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tardy, Olivia & Lenglos, Christophe & Lai, Sandra & Berteaux, Dominique & Leighton, Patrick A., 2023. "Rabies transmission in the Arctic: An agent-based model reveals the effects of broad-scale movement strategies on contact risk between Arctic foxes," Ecological Modelling, Elsevier, vol. 476(C).
    2. Crevier, Lucas Phillip & Salkeld, Joseph H & Marley, Jessa & Parrott, Lael, 2021. "Making the best possible choice: Using agent-based modelling to inform wildlife management in small communities," Ecological Modelling, Elsevier, vol. 446(C).
    3. Dur, Gaël & Won, Eun-Ji & Han, Jeonghoon & Lee, Jae-Seong & Souissi, Sami, 2021. "An individual-based model for evaluating post-exposure effects of UV-B radiation on zooplankton reproduction," Ecological Modelling, Elsevier, vol. 441(C).
    4. Anshuka Anshuka & Floris F. Ogtrop & David Sanderson & Simone Z. Leao, 2022. "A systematic review of agent-based model for flood risk management and assessment using the ODD protocol," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2739-2771, July.
    5. Kjær, Lene J. & Schauber, Eric M., 2022. "The effect of landscape, transmission mode and social behavior on disease transmission: Simulating the transmission of chronic wasting disease in white-tailed deer (Odocoileus virginianus) populations," Ecological Modelling, Elsevier, vol. 472(C).
    6. Daniel C. Kenny & Juan Castilla-Rho, 2022. "No Stakeholder Is an Island: Human Barriers and Enablers in Participatory Environmental Modelling," Land, MDPI, vol. 11(3), pages 1-26, February.
    7. Thurner, Stephanie D & Converse, Sarah J & Branch, Trevor A, 2021. "Modeling opportunistic exploitation: increased extinction risk when targeting more than one species," Ecological Modelling, Elsevier, vol. 454(C).
    8. Crouse, Kristin N. & Desai, Nisarg P. & Cassidy, Kira A. & Stahler, Erin E. & Lehman, Clarence L. & Wilson, Michael L., 2022. "Larger territories reduce mortality risk for chimpanzees, wolves, and agents: Multiple lines of evidence in a model validation framework," Ecological Modelling, Elsevier, vol. 471(C).
    9. Troost, Christian & Huber, Robert & Bell, Andrew R. & van Delden, Hedwig & Filatova, Tatiana & Le, Quang Bao & Lippe, Melvin & Niamir, Leila & Polhill, J. Gareth & Sun, Zhanli & Berger, Thomas, 2023. "How to keep it adequate: A protocol for ensuring validity in agent-based simulation," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 159, pages 1-21.
    10. MacPherson, Brian & Scott, Ryan & Gras, Robin, 2023. "Using individual-based modelling to investigate a pluralistic explanation for the prevalence of sexual reproduction in animal species," Ecological Modelling, Elsevier, vol. 475(C).
    11. An, Li & Grimm, Volker & Sullivan, Abigail & Turner II, B.L. & Malleson, Nicolas & Heppenstall, Alison & Vincenot, Christian & Robinson, Derek & Ye, Xinyue & Liu, Jianguo & Lindkvist, Emilie & Tang, W, 2021. "Challenges, tasks, and opportunities in modeling agent-based complex systems," Ecological Modelling, Elsevier, vol. 457(C).
    12. Sakiyama, Tomoko, 2023. "Spatial inconsistency of memorized positions produces different types of movements," Ecological Modelling, Elsevier, vol. 481(C).
    13. Luzius Meisser, 2017. "The Code is the Model," International Journal of Microsimulation, International Microsimulation Association, vol. 10(3), pages 184-201.
    14. Mori, Kensuke & Massolo, Alessandro & Marceau, Danielle & Stefanakis, Emmanuel, 2023. "Modelling the epidemiology of zoonotic parasites transmitted through a predator-prey system in urban landscapes: The Calgary Echinococcus multilocularis Coyote Agent-based model (CEmCA)," Ecological Modelling, Elsevier, vol. 475(C).
    15. Jascha-Alexander Koch & Jens Lausen & Moritz Kohlhase, 2021. "Internalizing the externalities of overfunding: an agent-based model approach for analyzing the market dynamics on crowdfunding platforms," Journal of Business Economics, Springer, vol. 91(9), pages 1387-1430, November.
    16. Watson, Joseph W & Boyd, Robin & Dutta, Ritabrata & Vasdekis, Georgios & Walker, Nicola D. & Roy, Shovonlal & Everitt, Richard & Hyder, Kieran & Sibly, Richard M, 2022. "Incorporating environmental variability in a spatially-explicit individual-based model of European sea bass✰," Ecological Modelling, Elsevier, vol. 466(C).
    17. Noeldeke, Beatrice & Winter, Etti & Ntawuhiganayo, Elisée Bahati, 2022. "Representing human decision-making in agent-based simulation models: Agroforestry adoption in rural Rwanda," Ecological Economics, Elsevier, vol. 200(C).
    18. Petter, Gunnar & Kreft, Holger & Ong, Yongzhi & Zotz, Gerhard & Cabral, Juliano Sarmento, 2021. "Modelling the long-term dynamics of tropical forests: From leaf traits to whole-tree growth patterns," Ecological Modelling, Elsevier, vol. 460(C).
    19. Medeiros-Sousa, Antônio Ralph & Laporta, Gabriel Zorello & Mucci, Luis Filipe & Marrelli, Mauro Toledo, 2022. "Epizootic dynamics of yellow fever in forest fragments: An agent-based model to explore the influence of vector and host parameters," Ecological Modelling, Elsevier, vol. 466(C).
    20. Diaz, Stephanie G. & DeAngelis, Donald L. & Gaines, Michael S. & Purdon, Andrew & Mole, Michael A. & van Aarde, Rudi J., 2021. "Development and validation of a spatially-explicit agent-based model for space utilization by African savanna elephants (Loxodonta africana) based on determinants of movement," Ecological Modelling, Elsevier, vol. 447(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:zpxtm. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.