IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/5950.html
   My bibliography  Save this paper

Heterogeneous Information Arrival and Option Pricing

Author

Listed:
  • Patrick K. Asea
  • Mthuli Ncube

Abstract

We model the arrival of heterogeneous information in a financial market as a doubly-stochastic Poisson process (DSPP). A DSPP is a member of the family of Poisson processes in which the mean value of the process itself is governed by a stochastic mechanism. We explore the implications for pricing stock, index and foreign currency options of the assumption that the under- lying security evolves as a mixed diffusion DSPP. We derive an intertemporal CAPM and demonstrate that accounting for heterogeneous information arrival may minimize the ubiquitous pricing bias 'smile-effect' of standard option pricing models. We propose a conceptually simple but numerically intensive maximum likelihood estimator of the parameters of a DSPP. A simulation study verifies the adequacy of the asymptotic approximations in finite samples.

Suggested Citation

  • Patrick K. Asea & Mthuli Ncube, 1997. "Heterogeneous Information Arrival and Option Pricing," NBER Working Papers 5950, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:5950
    Note: AP
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w5950.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Berry, Thomas D & Howe, Keith M, 1994. "Public Information Arrival," Journal of Finance, American Finance Association, vol. 49(4), pages 1331-1346, September.
    2. Huang, Chi-fu, 1987. "An Intertemporal General Equilibrium Asset Pricing Model: The Case of Diffusion Information," Econometrica, Econometric Society, vol. 55(1), pages 117-142, January.
    3. Jarrow, Robert A & Rosenfeld, Eric R, 1984. "Jump Risks and the Intertemporal Capital Asset Pricing Model," The Journal of Business, University of Chicago Press, vol. 57(3), pages 337-351, July.
    4. Chang Mo Ahn, 1992. "Option Pricing When Jump Risk Is Systematic1," Mathematical Finance, Wiley Blackwell, vol. 2(4), pages 299-308, October.
    5. Breeden, Douglas T., 1979. "An intertemporal asset pricing model with stochastic consumption and investment opportunities," Journal of Financial Economics, Elsevier, vol. 7(3), pages 265-296, September.
    6. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    7. Naik, Vasanttilak & Lee, Moon, 1990. "General Equilibrium Pricing of Options on the Market Portfolio with Discontinuous Returns," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 493-521.
    8. Scott, Louis O., 1987. "Option Pricing when the Variance Changes Randomly: Theory, Estimation, and an Application," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(4), pages 419-438, December.
    9. Brown, Stephen J & Dybvig, Philip H, 1986. "The Empirical Implications of the Cox, Ingersoll, Ross Theory of the Term Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 41(3), pages 617-630, July.
    10. Tauchen, George E & Pitts, Mark, 1983. "The Price Variability-Volume Relationship on Speculative Markets," Econometrica, Econometric Society, vol. 51(2), pages 485-505, March.
    11. Torben G. Andersen & Luca Benzoni, 2009. "Stochastic volatility," Working Paper Series WP-09-04, Federal Reserve Bank of Chicago.
    12. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
    13. Mark Rubinstein, 1976. "The Valuation of Uncertain Income Streams and the Pricing of Options," Bell Journal of Economics, The RAND Corporation, vol. 7(2), pages 407-425, Autumn.
    14. Cox, John C & Ingersoll, Jonathan E, Jr & Ross, Stephen A, 1985. "An Intertemporal General Equilibrium Model of Asset Prices," Econometrica, Econometric Society, vol. 53(2), pages 363-384, March.
    15. Merton, Robert C, 1973. "An Intertemporal Capital Asset Pricing Model," Econometrica, Econometric Society, vol. 41(5), pages 867-887, September.
    16. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
    17. Heston, Steven L, 1993. "Invisible Parameters in Option Prices," Journal of Finance, American Finance Association, vol. 48(3), pages 933-947, July.
    18. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    19. MacBeth, James D & Merville, Larry J, 1979. "An Empirical Examination of the Black-Scholes Call Option Pricing Model," Journal of Finance, American Finance Association, vol. 34(5), pages 1173-1186, December.
    20. Penman, Stephen H., 1987. "The distribution of earnings news over time and seasonalities in aggregate stock returns," Journal of Financial Economics, Elsevier, vol. 18(2), pages 199-228, June.
    21. Andersen, Torben G, 1996. "Return Volatility and Trading Volume: An Information Flow Interpretation of Stochastic Volatility," Journal of Finance, American Finance Association, vol. 51(1), pages 169-204, March.
    22. Back, Kerry, 1991. "Asset pricing for general processes," Journal of Mathematical Economics, Elsevier, vol. 20(4), pages 371-395.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patrick Asea & Mthuli Nube, 1997. "Heterogeneous Information Arrival and Option Pricing," UCLA Economics Working Papers 763, UCLA Department of Economics.
    2. Carolyn W. Chang, 1995. "A No-Arbitrage Martingale Analysis For Jump-Diffusion Valuation," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 18(3), pages 351-381, September.
    3. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    4. Dimitris Bertsimas & Leonid Kogan & Andrew W. Lo, 2001. "Hedging Derivative Securities and Incomplete Markets: An (epsilon)-Arbitrage Approach," Operations Research, INFORMS, vol. 49(3), pages 372-397, June.
    5. Bertsimas, Dimitris. & Kogan, Leonid, 1974- & Lo, Andrew W., 1997. "Pricing and hedging derivative securities in incomplete markets : an e-arbitrage approach," Working papers WP 3973-97., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    6. Dimitris Bertsimas & Leonid Kogan & Andrew W. Lo, 1997. "Pricing and Hedging Derivative Securities in Incomplete Markets: An E-Aritrage Model," NBER Working Papers 6250, National Bureau of Economic Research, Inc.
    7. Blanchet-Scalliet, Christophette & El Karoui, Nicole & Martellini, Lionel, 2005. "Dynamic asset pricing theory with uncertain time-horizon," Journal of Economic Dynamics and Control, Elsevier, vol. 29(10), pages 1737-1764, October.
    8. repec:dau:papers:123456789/5374 is not listed on IDEAS
    9. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    10. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    11. Yan, Shu, 2011. "Jump risk, stock returns, and slope of implied volatility smile," Journal of Financial Economics, Elsevier, vol. 99(1), pages 216-233, January.
    12. Chenghu Ma, 2003. "Term Structure of Interest Rates in the Presence of Levy Jumps: The HJM Approach," Annals of Economics and Finance, Society for AEF, vol. 4(2), pages 401-426, November.
    13. Elyès Jouini & Clotilde Napp, 2002. "Arbitrage Pricing And Equilibrium Pricing: Compatibility Conditions," World Scientific Book Chapters, in: Marco Avellaneda (ed.), Quantitative Analysis In Financial Markets Collected Papers of the New York University Mathematical Finance Seminar(Volume III), chapter 6, pages 131-158, World Scientific Publishing Co. Pte. Ltd..
    14. Ma, Chenghu, 2006. "Intertemporal recursive utility and an equilibrium asset pricing model in the presence of Levy jumps," Journal of Mathematical Economics, Elsevier, vol. 42(2), pages 131-160, April.
    15. Gerber, Hans U. & Shiu, Elias S. W., 1996. "Actuarial bridges to dynamic hedging and option pricing," Insurance: Mathematics and Economics, Elsevier, vol. 18(3), pages 183-218, November.
    16. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    17. Oliver X. Li & Weiping Li, 2015. "Hedging jump risk, expected returns and risk premia in jump-diffusion economies," Quantitative Finance, Taylor & Francis Journals, vol. 15(5), pages 873-888, May.
    18. Melenberg, B. & Werker, B.J.M., 1996. "On the Pricing of Options in Incomplete Markets," Discussion Paper 1996-19, Tilburg University, Center for Economic Research.
    19. David S. Bates, 1995. "Testing Option Pricing Models," NBER Working Papers 5129, National Bureau of Economic Research, Inc.
    20. Chang, Carolyn W. & S.K. Chang, Jack & Lim, Kian-Guan, 1998. "Information-time option pricing: theory and empirical evidence," Journal of Financial Economics, Elsevier, vol. 48(2), pages 211-242, May.
    21. Dilip B. Madan & Frank Milne, 1991. "Option Pricing With V. G. Martingale Components," Working Paper 1159, Economics Department, Queen's University.

    More about this item

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • D52 - Microeconomics - - General Equilibrium and Disequilibrium - - - Incomplete Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:5950. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.