IDEAS home Printed from https://ideas.repec.org/p/msh/ebswps/2021-3.html
   My bibliography  Save this paper

Manifold Learning with Approximate Nearest Neighbors

Author

Listed:
  • Fan Cheng
  • Rob J Hyndman
  • Anastasios Panagiotelis

Abstract

Manifold learning algorithms are valuable tools for the analysis of high-dimensional data, many of which include a step where nearest neighbors of all observations are found. This can present a computational bottleneck when the number of observations is large or when the observations lie in more general metric spaces, such as statistical manifolds, which require all pairwise distances between observations to be computed. We resolve this problem by using a broad range of approximate nearest neighbor algorithms within manifold learing algorithms and evaluating their impact on embedding accuracy. We use approximate nearest neighbors for statistical maifolds by exploiting the connection between Hellinger/Total variation distance for discrete distributions and the L2/L1 norm. Via a thorough empirical investigation based on the benchmark MNIST dataset, it is shown that approximate nearest neighbors lead to substantial improvements in computational time with little to no loss in the accuracy of the embedding produced by a manifold learning algorithm. This result is robust to the use of different manifold learning algorithms, to the use of different approximate nearest neighbor algorithms, and to the use of different measures of embedding accuracy. The proposed method is applied to learning statistical manifolds data on distributions of electricity usage. This application demonstrates how the proposed methods can be used to visualize and identify anomalies and uncover underlying structure within high-dimensional data in a way that is scalable to large datasets.

Suggested Citation

  • Fan Cheng & Rob J Hyndman & Anastasios Panagiotelis, 2021. "Manifold Learning with Approximate Nearest Neighbors," Monash Econometrics and Business Statistics Working Papers 3/21, Monash University, Department of Econometrics and Business Statistics.
  • Handle: RePEc:msh:ebswps:2021-3
    as

    Download full text from publisher

    File URL: https://www.monash.edu/business/ebs/research/publications/ebs/wp03-2021.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Lisha & Buja, Andreas, 2009. "Local Multidimensional Scaling for Nonlinear Dimension Reduction, Graph Drawing, and Proximity Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 209-219.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harold A. Hernández-Roig & M. Carmen Aguilera-Morillo & Rosa E. Lillo, 2021. "Functional Modeling of High-Dimensional Data: A Manifold Learning Approach," Mathematics, MDPI, vol. 9(4), pages 1-22, February.
    2. Luwan Zhang & Grace Wahba & Ming Yuan, 2016. "Distance shrinkage and Euclidean embedding via regularized kernel estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(4), pages 849-867, September.
    3. Jonas Paulsen & Odin Gramstad & Philippe Collas, 2015. "Manifold Based Optimization for Single-Cell 3D Genome Reconstruction," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-19, August.
    4. Silva, F.N. & Rodrigues, F.A. & Oliveira, O.N. & da F. Costa, L., 2013. "Quantifying the interdisciplinarity of scientific journals and fields," Journal of Informetrics, Elsevier, vol. 7(2), pages 469-477.
    5. Gruenhage, Gina & Opper, Manfred & Barthelme, Simon, 2016. "Visualizing the effects of a changing distance on data using continuous embeddings," Computational Statistics & Data Analysis, Elsevier, vol. 104(C), pages 51-65.

    More about this item

    Keywords

    statistical manifold; dimension reduction; anomaly detection; k-d trees; Hellinger distance; smart meter data;
    All these keywords.

    JEL classification:

    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • C65 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Miscellaneous Mathematical Tools
    • C80 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2021-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Professor Xibin Zhang (email available below). General contact details of provider: https://edirc.repec.org/data/dxmonau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.