Advanced Search
MyIDEAS: Login to save this paper or follow this series

Nonparametric estimation of distribution and density functions in presence of missing data: an IFS approach

Contents:

Author Info

  • Stefano Iacus

    ()

  • Davide La Torre

    ()

Abstract

In this paper we consider a class of nonparametric estimators of a distribution function F, with compact support, based on the theory of IFSs. The estimator of F is tought as the fixed point of a contractive operator T defined in terms of a vector of parameters p and a family of affine maps W which can be both depend of the sample (X1,X2, . . . ,Xn). Given W, the problem consists in finding a vector p such that the fixed point of T is "sufficiently near" to F. It turns out that this is aquadratic constrained optimization problem that we propose to solve by penalization techniques. If F has a density f, we can also provide an estimator of f based on Fourier techniques. IFS estimators for F are asymptotically equivalent to the empirical distribution function (e. d. f. ) estimator. We will study relative efficiency of the IFS estimators with respect to the e. d. f. for small samples via Monte Carlo approach. For well behaved distribution functions F and for a particular family of so-called wavelet maps the IFS estimators can be dramatically better than the e. d. f. (or the kernel estimator for density estimation) in presence of missing data, i. e. when it is only possibile to observe data on subsets of the whole support of F. This research has also produced a free package for the R statistical environment which is ready to be used in applications.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://wp.demm.unimi.it/tl_files/wp/2002/DEMM-2002_025wp.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano in its series Departmental Working Papers with number 2002-25.

as in new window
Length:
Date of creation: 01 Jan 2002
Date of revision:
Handle: RePEc:mil:wpdepa:2002-25

Contact details of provider:
Postal: Via Conservatorio 7, I-20122 Milan - Italy
Phone: +39 02 50321522
Fax: +39 02 50321505
Web page: http://www.demm.unimi.it
More information through EDIRC

Related research

Keywords: iterated function systems; distribution function estimation; nonparametric estimation; missing data; density estimation.;

This paper has been announced in the following NEP Reports:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:mil:wpdepa:2002-25. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (DEMM Working Papers) The email address of this maintainer does not seem to be valid anymore. Please ask DEMM Working Papers to update the entry or send us the correct address.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.