IDEAS home Printed from https://ideas.repec.org/p/inn/wpaper/2016-33.html
   My bibliography  Save this paper

Estimation of Spatially Correlated Random Scaling Factors based on Markov Random Field Priors

Author

Listed:
  • Alexander Razen
  • Stefan Lang
  • Judith Santer

Abstract

Multiplicative random effects allow for cluster-specific scaling of covariate effects. In many applications with spatial clustering, however, the random effects additionally show some geographical pattern, which usually can not sufficiently be captured with existing estimation techniques. Relying on Markov random fields, we present a fully Bayesian inference procedure for spatially correlated scaling factors. The estimation is based on highly efficient Markov Chain Monte Carlo (MCMC) algorithms and is smoothly incorporated into the framework of distributional regression. We run a comprehensive simulation study for different response distributions to examine the statistical properties of our approach. We also compare our results to those of a general estimation procedure for independent random scaling factors. Furthermore, we apply the method to German real estate data and show that exploiting the spatial correlation of the scaling factors further improves the performance of the model.

Suggested Citation

  • Alexander Razen & Stefan Lang & Judith Santer, 2016. "Estimation of Spatially Correlated Random Scaling Factors based on Markov Random Field Priors," Working Papers 2016-33, Faculty of Economics and Statistics, Universität Innsbruck.
  • Handle: RePEc:inn:wpaper:2016-33
    as

    Download full text from publisher

    File URL: http://eeecon.uibk.ac.at/wopec2/repec/inn/wpaper/2016-33.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. W. Brunauer & S. Lang & P. Wechselberger & S. Bienert, 2010. "Additive Hedonic Regression Models with Spatial Scaling Factors: An Application for Rents in Vienna," The Journal of Real Estate Finance and Economics, Springer, vol. 41(4), pages 390-411, November.
    2. Alexander Razen & Stefan Lang, 2016. "Random Scaling Factors in Bayesian Distributional Regression Models with an Application to Real Estate Data," Working Papers 2016-30, Faculty of Economics and Statistics, Universität Innsbruck.
    3. Ludwig Fahrmeir & Stefan Lang, 2001. "Bayesian inference for generalized additive mixed models based on Markov random field priors," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 50(2), pages 201-220.
    4. Julian Besag & Jeremy York & Annie Mollié, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
    5. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    6. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tamvada, Jagannadha Pawan, 2010. "The Dynamics of Self-employment in a Developing Country: Evidence from India," MPRA Paper 20042, University Library of Munich, Germany.
    2. Congdon, Peter, 2006. "A model for non-parametric spatially varying regression effects," Computational Statistics & Data Analysis, Elsevier, vol. 50(2), pages 422-445, January.
    3. Areti Boulieri & Silvia Liverani & Kees Hoogh & Marta Blangiardo, 2017. "A space–time multivariate Bayesian model to analyse road traffic accidents by severity," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(1), pages 119-139, January.
    4. Rodrigues, E.C. & Assunção, R., 2012. "Bayesian spatial models with a mixture neighborhood structure," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 88-102.
    5. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    6. Brezger, Andreas & Lang, Stefan, 2006. "Generalized structured additive regression based on Bayesian P-splines," Computational Statistics & Data Analysis, Elsevier, vol. 50(4), pages 967-991, February.
    7. Volker Schmid & Leonhard Held, 2004. "Bayesian Extrapolation of Space–Time Trends in Cancer Registry Data," Biometrics, The International Biometric Society, vol. 60(4), pages 1034-1042, December.
    8. Birgit Schrödle & Leonhard Held, 2011. "A primer on disease mapping and ecological regression using $${\texttt{INLA}}$$," Computational Statistics, Springer, vol. 26(2), pages 241-258, June.
    9. Klein, Nadja & Herwartz, Helmut & Kneib, Thomas, 2020. "Modelling regional patterns of inefficiency: A Bayesian approach to geoadditive panel stochastic frontier analysis with an application to cereal production in England and Wales," Journal of Econometrics, Elsevier, vol. 214(2), pages 513-539.
    10. Peter Congdon, 2010. "A Multilevel Model for Comorbid Outcomes: Obesity and Diabetes in the US," IJERPH, MDPI, vol. 7(2), pages 1-20, January.
    11. Gamerman, Dani & Moreira, Ajax R. B., 2004. "Multivariate spatial regression models," Journal of Multivariate Analysis, Elsevier, vol. 91(2), pages 262-281, November.
    12. G. Vicente & T. Goicoa & P. Fernandez‐Rasines & M. D. Ugarte, 2020. "Crime against women in India: unveiling spatial patterns and temporal trends of dowry deaths in the districts of Uttar Pradesh," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 655-679, February.
    13. Klein, Nadja & Denuit, Michel & Lang, Stefan & Kneib, Thomas, 2013. "Nonlife Ratemaking and Risk Management with Bayesian Additive Models for Location, Scale and Shape," LIDAM Discussion Papers ISBA 2013045, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    14. Leonhard Knorr-Held & Günter Raßer & Nikolaus Becker, 2002. "Disease Mapping of Stage-Specific Cancer Incidence Data," Biometrics, The International Biometric Society, vol. 58(3), pages 492-501, September.
    15. Alexander Razen & Stefan Lang, 2016. "Random Scaling Factors in Bayesian Distributional Regression Models with an Application to Real Estate Data," Working Papers 2016-30, Faculty of Economics and Statistics, Universität Innsbruck.
    16. Nushrat Nazia & Zahid Ahmad Butt & Melanie Lyn Bedard & Wang-Choi Tang & Hibah Sehar & Jane Law, 2022. "Methods Used in the Spatial and Spatiotemporal Analysis of COVID-19 Epidemiology: A Systematic Review," IJERPH, MDPI, vol. 19(14), pages 1-28, July.
    17. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    18. Eibich, Peter & Ziebarth, Nicolas, 2014. "Examining the Structure of Spatial Health Effects in Germany Using Hierarchical Bayes Models," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 49, pages 305-320.
    19. Mayer Alvo & Jingrui Mu, 2023. "COVID-19 Data Analysis Using Bayesian Models and Nonparametric Geostatistical Models," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    20. Bassetti, Federico & De Giuli, Maria Elena & Nicolino, Enrica & Tarantola, Claudia, 2018. "Multivariate dependence analysis via tree copula models: An application to one-year forward energy contracts," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1107-1121.

    More about this item

    Keywords

    distributional regression; iteratively weighted least squares proposals; MCMC; multiplicative random effects; spatial smoothing; structured additive predictors;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inn:wpaper:2016-33. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Janette Walde (email available below). General contact details of provider: https://edirc.repec.org/data/fuibkat.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.