IDEAS home Printed from https://ideas.repec.org/p/iim/iimawp/wp01501.html
   My bibliography  Save this paper

A Probabilistic Tabu Search Algorithm for the Generalized Minimum Spanning Tree Problem

Author

Listed:
  • Ghosh, Diptesh

Abstract

In this paper we present a probabilistic tabu search algorithm for the generalized minimum spanning tree problem. The basic idea behind the algorithm is to use preprocessing operations to arrive at a probability value for each vertex which roughly corresponds to its probability of being included in an optimal solution, and to use such probability values to shrink the size of the neighborhood of solutions to manageable proportions. We report results from computational experiments that demonstrate the superiority of this method over the generic tabu search method.

Suggested Citation

  • Ghosh, Diptesh, 2003. "A Probabilistic Tabu Search Algorithm for the Generalized Minimum Spanning Tree Problem," IIMA Working Papers WP2003-07-02, Indian Institute of Management Ahmedabad, Research and Publication Department.
  • Handle: RePEc:iim:iimawp:wp01501
    as

    Download full text from publisher

    File URL: https://www.iima.ac.in/sites/default/files/rnpfiles/2003-07-02DipteshGhosh.pdf
    File Function: English Version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Feremans, Corinne & Labbe, Martine & Laporte, Gilbert, 2001. "On generalized minimum spanning trees," European Journal of Operational Research, Elsevier, vol. 134(2), pages 457-458, October.
    2. Dror, M. & Haouari, M. & Chaouachi, J., 2000. "Generalized spanning trees," European Journal of Operational Research, Elsevier, vol. 120(3), pages 583-592, February.
    3. Feremans, Corinne & Labbe, Martine & Laporte, Gilbert, 2003. "Generalized network design problems," European Journal of Operational Research, Elsevier, vol. 148(1), pages 1-13, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nermin Elif Kurt & H. Bahadir Sahin & Kurc{s}ad Derinkuyu, 2018. "An Adaptive Tabu Search Algorithm for Market Clearing Problem in Turkish Day-Ahead Market," Papers 1809.10554, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghosh, Diptesh, 2003. "Solving Medium to Large Sized Euclidean Generalized Minimum Spanning Tree Problems," IIMA Working Papers WP2003-08-02, Indian Institute of Management Ahmedabad, Research and Publication Department.
    2. Pop, Petrică C., 2020. "The generalized minimum spanning tree problem: An overview of formulations, solution procedures and latest advances," European Journal of Operational Research, Elsevier, vol. 283(1), pages 1-15.
    3. Haouari, Mohamed & Chaouachi, Jouhaina Siala, 2006. "Upper and lower bounding strategies for the generalized minimum spanning tree problem," European Journal of Operational Research, Elsevier, vol. 171(2), pages 632-647, June.
    4. Feremans, Corinne & Labbe, Martine & Laporte, Gilbert, 2003. "Generalized network design problems," European Journal of Operational Research, Elsevier, vol. 148(1), pages 1-13, July.
    5. M Haouari & J Chaouachi & M Dror, 2005. "Solving the generalized minimum spanning tree problem by a branch-and-bound algorithm," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(4), pages 382-389, April.
    6. Pop, Petrică C. & Matei, Oliviu & Sabo, Cosmin & Petrovan, Adrian, 2018. "A two-level solution approach for solving the generalized minimum spanning tree problem," European Journal of Operational Research, Elsevier, vol. 265(2), pages 478-487.
    7. J Renaud & F F Boctor & G Laporte, 2004. "Efficient heuristics for Median Cycle Problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(2), pages 179-186, February.
    8. Garijo, Delia & Márquez, Alberto & Rodríguez, Natalia & Silveira, Rodrigo I., 2019. "Computing optimal shortcuts for networks," European Journal of Operational Research, Elsevier, vol. 279(1), pages 26-37.
    9. Duin, C. W. & Volgenant, A. & Vo[ss], S., 2004. "Solving group Steiner problems as Steiner problems," European Journal of Operational Research, Elsevier, vol. 154(1), pages 323-329, April.
    10. Cosmin Sabo & Petrică C. Pop & Andrei Horvat-Marc, 2020. "On the Selective Vehicle Routing Problem," Mathematics, MDPI, vol. 8(5), pages 1-11, May.
    11. Phuoc Hoang Le & Tri-Dung Nguyen & Tolga Bektaş, 2016. "Generalized minimum spanning tree games," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 4(2), pages 167-188, May.
    12. Feremans, Corinne & Labbe, Martine & Laporte, Gilbert, 2001. "On generalized minimum spanning trees," European Journal of Operational Research, Elsevier, vol. 134(2), pages 457-458, October.
    13. Mattia D’Emidio & Luca Forlizzi & Daniele Frigioni & Stefano Leucci & Guido Proietti, 2019. "Hardness, approximability, and fixed-parameter tractability of the clustered shortest-path tree problem," Journal of Combinatorial Optimization, Springer, vol. 38(1), pages 165-184, July.
    14. Kansal, Anuraag R & Torquato, Salvatore, 2001. "Globally and locally minimal weight spanning tree networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 301(1), pages 601-619.
    15. Moshe Dror & Mohamed Haouari, 2000. "Generalized Steiner Problems and Other Variants," Journal of Combinatorial Optimization, Springer, vol. 4(4), pages 415-436, December.
    16. Gallo, Mariano & D'Acierno, Luca & Montella, Bruno, 2010. "A meta-heuristic approach for solving the Urban Network Design Problem," European Journal of Operational Research, Elsevier, vol. 201(1), pages 144-157, February.
    17. Markus Leitner, 2016. "Integer programming models and branch-and-cut approaches to generalized {0,1,2}-survivable network design problems," Computational Optimization and Applications, Springer, vol. 65(1), pages 73-92, September.
    18. Yi Tao & Ek Peng Chew & Loo Hay Lee & Yuran Shi, 2017. "A column generation approach for the route planning problem in fourth party logistics," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(2), pages 165-181, February.
    19. Akyüz, M. Hakan & Lee, Chung-Yee, 2016. "Service type assignment and container routing with transit time constraints and empty container repositioning for liner shipping service networks," Transportation Research Part B: Methodological, Elsevier, vol. 88(C), pages 46-71.
    20. Feess, E. & Walzl, M., 2004. "An analysis of corporte leniency programs and lessons to learn for EU and US policies," Research Memorandum 037, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iim:iimawp:wp01501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/eciimin.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.