Advanced Search
MyIDEAS: Login

Nonparametric regression for dependent data in the errors-in-variables problem

Contents:

Author Info

  • Toshio Honda

Abstract

We consider the nonparametric estimation of the regression functions for dependent data. Suppose that the covariates are observed with additive errors in the data and we employ nonparametric deconvolution kernel techniques to estimate the regression functions in this paper. We investigate how the strength of time dependence affects the asymptotic properties of the local constant and linear estimators. We treat both short-range dependent and long-range dependent linear processes in a unified way and demonstrate that the long-range dependence (LRD) of the covariates affects the asymptotic properties of the nonparametric estimators as well as the LRD of regression errors does.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://gcoe.ier.hit-u.ac.jp/research/discussion/2008/pdf/gd09-092.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Institute of Economic Research, Hitotsubashi University in its series Global COE Hi-Stat Discussion Paper Series with number gd09-092.

as in new window
Length:
Date of creation: Nov 2009
Date of revision:
Handle: RePEc:hst:ghsdps:gd09-092

Contact details of provider:
Postal: 2-1 Naka, Kunitachi City, Tokyo 186
Phone: +81-42-580-8327
Fax: +81-42-580-8333
Email:
Web page: http://www.ier.hit-u.ac.jp/
More information through EDIRC

Related research

Keywords: local polynomial regression; errors-in-variables; deconvolution; ordinary smooth case; supersmooth case; linear processes; long-range dependence;

This paper has been announced in the following NEP Reports:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:hst:ghsdps:gd09-092. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Tatsuji Makino).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.