Advanced Search
MyIDEAS: Login to save this paper or follow this series

On Liu Estimators for the Logit Regression Model

Contents:

Author Info

  • Månsson, Kristofer

    (Jönköping University)

  • Kibria, B. M. Golam

    (Florida International University)

  • Shukur, Ghazi

    (Linnaeus University)

Abstract

In innovation analysis the logit model used to be applied on available data when the dependent variables are dichotomous. Since most of the economic variables are correlated between each other practitioners often meet the problem of multicollinearity. This paper introduces a shrinkage estimator for the logit model which is a generalization of the estimator proposed by Liu (1993) for the linear regression. This new estimation method is suggested since the mean squared error (MSE) of the commonly used maximum likelihood (ML) method becomes inflated when the explanatory variables of the regression model are highly correlated. Using MSE, the optimal value of the shrinkage parameter is derived and some methods of estimating it are proposed. It is shown by means of Monte Carlo simulations that the estimated MSE and mean absolute error (MAE) are lower for the proposed Liu estimator than those of the ML in the presence of multicollinearity. Finally the benefit of the Liu estimator is shown in an empirical application where different economic factors are used to explain the probability that municipalities have net increase of inhabitants.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: https://static.sys.kth.se/itm/wp/cesis/cesiswp259.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Royal Institute of Technology, CESIS - Centre of Excellence for Science and Innovation Studies in its series Working Paper Series in Economics and Institutions of Innovation with number 259.

as in new window
Length: 14 pages
Date of creation: 18 Oct 2011
Date of revision:
Handle: RePEc:hhs:cesisp:0259

Contact details of provider:
Postal: CESIS - Centre of Excellence for Science and Innovation Studies, Royal Institute of Technology, SE-100 44 Stockholm, Sweden
Phone: +46 8 790 95 63
Web page: http://www.infra.kth.se/cesis/
More information through EDIRC

Related research

Keywords: Estimation; MAE; MSE; Multicollinearity; Logit; Liu; Innovation analysis;

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Arashi, M. & Kibria, B.M. Golam & Norouzirad, M. & Nadarajah, S., 2014. "Improved preliminary test and Stein-rule Liu estimators for the ill-conditioned elliptical linear regression model," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 53-74.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:hhs:cesisp:0259. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Vardan Hovsepyan).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.