IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-01686952.html
   My bibliography  Save this paper

Numerical approximations of McKean Anticipative Backward Stochastic Differential Equations arising in Initial Margin requirements

Author

Listed:
  • Ankush Agarwal

    (CMAP - Centre de Mathématiques Appliquées - Ecole Polytechnique - X - École polytechnique - CNRS - Centre National de la Recherche Scientifique)

  • Stefano de Marco

    (CMAP - Centre de Mathématiques Appliquées - Ecole Polytechnique - X - École polytechnique - CNRS - Centre National de la Recherche Scientifique)

  • Emmanuel Gobet

    (CMAP - Centre de Mathématiques Appliquées - Ecole Polytechnique - X - École polytechnique - CNRS - Centre National de la Recherche Scientifique)

  • José G López-Salas

    (CMAP - Centre de Mathématiques Appliquées - Ecole Polytechnique - X - École polytechnique - CNRS - Centre National de la Recherche Scientifique)

  • Fanny Noubiagain

    (Département de Mathématiques [Le Mans] - UM - Le Mans Université)

  • Alexandre Zhou

    (CERMICS - Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique - ENPC - École des Ponts ParisTech)

Abstract

We introduce a new class of anticipative backward stochastic differential equations with a dependence of McKean type on the law of the solution, that we name MKABSDE. We provide existence and uniqueness results in a general framework with relatively general regularity assumptions on the coefficients. We show how such stochastic equations arise within the modern paradigm of derivative pricing where a central counterparty (CCP) requires the members to deposit variation and initial margins to cover their exposure. In the case when the initial margin is proportional to the Conditional Value-at-Risk (CVaR) of the contract price, we apply our general result to define the price as a solution of a MKABSDE. We provide several linear and non-linear simpler approximations, which we solve using different numerical (deterministic and Monte-Carlo) methods.

Suggested Citation

  • Ankush Agarwal & Stefano de Marco & Emmanuel Gobet & José G López-Salas & Fanny Noubiagain & Alexandre Zhou, 2019. "Numerical approximations of McKean Anticipative Backward Stochastic Differential Equations arising in Initial Margin requirements," Working Papers hal-01686952, HAL.
  • Handle: RePEc:hal:wpaper:hal-01686952
    Note: View the original document on HAL open archive server: https://hal.science/hal-01686952v3
    as

    Download full text from publisher

    File URL: https://hal.science/hal-01686952v3/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mark Broadie & Paul Glasserman, 1996. "Estimating Security Price Derivatives Using Simulation," Management Science, INFORMS, vol. 42(2), pages 269-285, February.
    2. N. El Karoui & S. Peng & M. C. Quenez, 1997. "Backward Stochastic Differential Equations in Finance," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 1-71, January.
    3. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    4. Paul Glasserman & Philip Heidelberger & Perwez Shahabuddin, 2000. "Variance Reduction Techniques for Estimating Value-at-Risk," Management Science, INFORMS, vol. 46(10), pages 1349-1364, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bourgey Florian & De Marco Stefano & Gobet Emmanuel & Zhou Alexandre, 2020. "Multilevel Monte Carlo methods and lower–upper bounds in initial margin computations," Monte Carlo Methods and Applications, De Gruyter, vol. 26(2), pages 131-161, June.
    2. Stéphane Crépey & Wissal Sabbagh & Shiqi Song, 2020. "When Capital Is a Funding Source: The Anticipated Backward Stochastic Differential Equations of X-Value Adjustments," Post-Print hal-03910119, HAL.
    3. F Bourgey & S de Marco & Emmanuel Gobet & Alexandre Zhou, 2020. "Multilevel Monte-Carlo methods and lower-upper bounds in Initial Margin computations," Post-Print hal-02430430, HAL.
    4. F Bourgey & S de Marco & Emmanuel Gobet & Alexandre Zhou, 2020. "Multilevel Monte-Carlo methods and lower-upper bounds in Initial Margin computations," Working Papers hal-02430430, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ankush Agarwal & Stefano de Marco & Emmanuel Gobet & José G López-Salas & Fanny Noubiagain & Alexandre Zhou, 2019. "Numerical approximations of McKean Anticipative Backward Stochastic Differential Equations arising in Initial Margin requirements," Post-Print hal-01686952, HAL.
    2. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    3. Leitner Johannes, 2007. "Pricing and hedging with globally and instantaneously vanishing risk," Statistics & Risk Modeling, De Gruyter, vol. 25(4/2007), pages 1-22, October.
    4. Onur Babat & Juan C. Vera & Luis F. Zuluaga, 2021. "Computing near-optimal Value-at-Risk portfolios using Integer Programming techniques," Papers 2107.07339, arXiv.org.
    5. Leippold, Markus & Schärer, Steven, 2017. "Discrete-time option pricing with stochastic liquidity," Journal of Banking & Finance, Elsevier, vol. 75(C), pages 1-16.
    6. Jana Bielagk & Arnaud Lionnet & Gonçalo dos Reis, 2015. "Equilibrium pricing under relative performance concerns," Working Papers hal-01245812, HAL.
    7. Wayne King Ming Chan, 2015. "RAROC-Based Contingent Claim Valuation," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2015.
    8. Nicole EL KAROUI & Claudia RAVANELLI, 2008. "Cash Sub-additive Risk Measures and Interest Rate Ambiguity," Swiss Finance Institute Research Paper Series 08-09, Swiss Finance Institute.
    9. Tak Siu, 2012. "A BSDE approach to risk-based asset allocation of pension funds with regime switching," Annals of Operations Research, Springer, vol. 201(1), pages 449-473, December.
    10. John Board & Charles Sutcliffe & William T. Ziemba, 2003. "Applying Operations Research Techniques to Financial Markets," Interfaces, INFORMS, vol. 33(2), pages 12-24, April.
    11. Briand, Philippe & Hibon, Hélène, 2021. "Particles Systems for mean reflected BSDEs," Stochastic Processes and their Applications, Elsevier, vol. 131(C), pages 253-275.
    12. Stadje, M.A. & Pelsser, A., 2014. "Time-Consistent and Market-Consistent Evaluations (Revised version of 2012-086)," Discussion Paper 2014-002, Tilburg University, Center for Economic Research.
    13. Antoon Pelsser & Mitja Stadje, 2014. "Time-Consistent And Market-Consistent Evaluations," Mathematical Finance, Wiley Blackwell, vol. 24(1), pages 25-65, January.
    14. Vorbrink, Jörg, 2014. "Financial markets with volatility uncertainty," Journal of Mathematical Economics, Elsevier, vol. 53(C), pages 64-78.
    15. Shige Peng & Mingyu Xu, 2006. "Reflected BSDE with a Constraint and a New Doob-Meyer Nonlinear Decomposition," Papers math/0611869, arXiv.org, revised Jul 2008.
    16. Wei Chen, 2013. "Fractional G-White Noise Theory, Wavelet Decomposition for Fractional G-Brownian Motion, and Bid-Ask Pricing Application to Finance Under Uncertainty," Papers 1306.4070, arXiv.org.
    17. Rosazza Gianin, Emanuela, 2006. "Risk measures via g-expectations," Insurance: Mathematics and Economics, Elsevier, vol. 39(1), pages 19-34, August.
    18. Zhao, Guoqing, 2009. "Lenglart domination inequalities for g-expectations," Statistics & Probability Letters, Elsevier, vol. 79(22), pages 2338-2342, November.
    19. Roger J. A. Laeven & Mitja Stadje, 2014. "Robust Portfolio Choice and Indifference Valuation," Mathematics of Operations Research, INFORMS, vol. 39(4), pages 1109-1141, November.
    20. L. Jeff Hong & Sandeep Juneja & Jun Luo, 2014. "Estimating Sensitivities of Portfolio Credit Risk Using Monte Carlo," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 848-865, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-01686952. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.