IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-01521491.html
   My bibliography  Save this paper

Fast calibration of the Libor Market Model with Stochastic Volatility and Displaced Diffusion

Author

Listed:
  • Laurent Devineau

    (R&D, Milliman, Paris - Milliman France)

  • Pierre-Edouard Arrouy

    (R&D, Milliman, Paris - Milliman France)

  • Paul Bonnefoy

    (R&D, Milliman, Paris - Milliman France)

  • Alexandre Boumezoued

    (R&D, Milliman, Paris - Milliman France)

Abstract

This paper demonstrates the efficiency of using Edgeworth and Gram-Charlier expansions in the calibration of the Libor Market Model with Stochastic Volatility and Displaced Diffusion (DD-SV-LMM). Our approach brings together two research areas; first, the results regarding the SV-LMM since the work of Wu and Zhang (2006), especially on the moment generating function, and second the approximation of density distributions based on Edgeworth or Gram-Charlier expansions. By exploring the analytical tractability of moments up to fourth order, we are able to perform an adjustment of the reference Bachelier model with normal volatilities for skewness and kurtosis, and as a by-product to derive a smile formula relating the volatility to the moneyness with interpretable parameters. As a main conclusion, our numerical results show a 98% reduction in computational time for the DD-SV-LMM calibration process compared to the classical numerical integration method developed by Heston (1993).

Suggested Citation

  • Laurent Devineau & Pierre-Edouard Arrouy & Paul Bonnefoy & Alexandre Boumezoued, 2017. "Fast calibration of the Libor Market Model with Stochastic Volatility and Displaced Diffusion," Working Papers hal-01521491, HAL.
  • Handle: RePEc:hal:wpaper:hal-01521491
    Note: View the original document on HAL open archive server: https://hal.science/hal-01521491v2
    as

    Download full text from publisher

    File URL: https://hal.science/hal-01521491v2/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Leif Andersen & Jesper Andreasen, 2000. "Volatility skews and extensions of the Libor market model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 7(1), pages 1-32.
    2. Ciprian Necula & Gabriel Drimus & Walter Farkas, 2019. "A general closed form option pricing formula," Review of Derivatives Research, Springer, vol. 22(1), pages 1-40, April.
    3. Charles J. Corrado & Tie Su, 1996. "Skewness And Kurtosis In S&P 500 Index Returns Implied By Option Prices," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(2), pages 175-192, June.
    4. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    5. Robert JARROW & Andrew RUDD, 2008. "Approximate Option Valuation For Arbitrary Stochastic Processes," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 1, pages 9-31, World Scientific Publishing Co. Pte. Ltd..
    6. Balieiro Filho, Ruy Gabriel & Rosenfeld, Rogerio, 2004. "Testing option pricing with the Edgeworth expansion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(3), pages 484-490.
    7. Charles J. Corrado & Tie Su, 1996. "Skewness And Kurtosis In S&P 500 Index Returns Implied By Option Prices," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(2), pages 175-192, June.
    8. Bouchaud,Jean-Philippe & Potters,Marc, 2003. "Theory of Financial Risk and Derivative Pricing," Cambridge Books, Cambridge University Press, number 9780521819169.
    9. Bauer, Daniel & Reuss, Andreas & Singer, Daniela, 2012. "On the Calculation of the Solvency Capital Requirement Based on Nested Simulations," ASTIN Bulletin, Cambridge University Press, vol. 42(2), pages 453-499, November.
    10. L. De Leo & V. Vargas & S. Ciliberti & J. -P. Bouchaud, 2012. "We've walked a million miles for one of these smiles," Papers 1203.5703, arXiv.org, revised Apr 2012.
    11. Schlögl, Erik, 2013. "Option pricing where the underlying assets follow a Gram/Charlier density of arbitrary order," Journal of Economic Dynamics and Control, Elsevier, vol. 37(3), pages 611-632.
    12. Laurent Devineau & Stéphane Loisel, 2009. "Construction d'un algorithme d'accélération de la méthode des «simulations dans les simulations» pour le calcul du capital économique Solvabilité II," Post-Print hal-00365363, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pierre-Edouard Arrouy & Sophian Mehalla & Bernard Lapeyre & Alexandre Boumezoued, 2020. "Jacobi Stochastic Volatility factor for the Libor Market Model," Working Papers hal-02468583, HAL.
    2. Fabrice Borel-Mathurin & Nicole El Karoui & Stéphane Loisel & Julien Vedani, 2020. "Locality in time of the European insurance regulation "risk-neutral" valuation framework, a pre-and post-Covid analysis and further developments," Working Papers hal-02905181, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pierre-Edouard Arrouy & Sophian Mehalla & Bernard Lapeyre & Alexandre Boumezoued, 2020. "Jacobi Stochastic Volatility factor for the Libor Market Model," Working Papers hal-02468583, HAL.
    2. Damir Filipovic & Damien Ackerer & Sergio Pulido, 2018. "The Jacobi Stochastic Volatility Model," Post-Print hal-01338330, HAL.
    3. Damien Ackerer & Damir Filipovic & Sergio Pulido, 2017. "The Jacobi Stochastic Volatility Model," Working Papers hal-01338330, HAL.
    4. Damien Ackerer & Damir Filipovi'c & Sergio Pulido, 2016. "The Jacobi Stochastic Volatility Model," Papers 1605.07099, arXiv.org, revised Mar 2018.
    5. Steven L. Heston & Alberto G. Rossi, 2017. "A Spanning Series Approach to Options," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 7(1), pages 2-42.
    6. Rompolis, Leonidas S., 2010. "Retrieving risk neutral densities from European option prices based on the principle of maximum entropy," Journal of Empirical Finance, Elsevier, vol. 17(5), pages 918-937, December.
    7. Pakorn Aschakulporn & Jin E. Zhang, 2022. "Bakshi, Kapadia, and Madan (2003) risk-neutral moment estimators: A Gram–Charlier density approach," Review of Derivatives Research, Springer, vol. 25(3), pages 233-281, October.
    8. Fiorentini, Gabriele & Leon, Angel & Rubio, Gonzalo, 2002. "Estimation and empirical performance of Heston's stochastic volatility model: the case of a thinly traded market," Journal of Empirical Finance, Elsevier, vol. 9(2), pages 225-255, March.
    9. repec:oup:rapstu:v:7:y:2017:i:1:p:2-42. is not listed on IDEAS
    10. Lin, Shin-Hung & Huang, Hung-Hsi & Li, Sheng-Han, 2015. "Option pricing under truncated Gram–Charlier expansion," The North American Journal of Economics and Finance, Elsevier, vol. 32(C), pages 77-97.
    11. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    12. Jurczenko, Emmanuel & Maillet, Bertrand & Negrea, Bogdan, 2002. "Revisited multi-moment approximate option pricing models: a general comparison (Part 1)," LSE Research Online Documents on Economics 24950, London School of Economics and Political Science, LSE Library.
    13. Hosam Ki & Byungwook Choi & Kook‐Hyun Chang & Miyoung Lee, 2005. "Option pricing under extended normal distribution," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 25(9), pages 845-871, September.
    14. Damien Ackerer & Damir Filipović & Sergio Pulido, 2018. "The Jacobi stochastic volatility model," Finance and Stochastics, Springer, vol. 22(3), pages 667-700, July.
    15. Leon, Angel & Rubio, Gonzalo & Serna, Gregorio, 2005. "Autoregresive conditional volatility, skewness and kurtosis," The Quarterly Review of Economics and Finance, Elsevier, vol. 45(4-5), pages 599-618, September.
    16. Arturo Leccadito & Pietro Toscano & Radu S. Tunaru, 2012. "Hermite Binomial Trees: A Novel Technique For Derivatives Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(08), pages 1-36.
    17. Äijö, Janne, 2008. "Impact of US and UK macroeconomic news announcements on the return distribution implied by FTSE-100 index options," International Review of Financial Analysis, Elsevier, vol. 17(2), pages 242-258.
    18. Bogdan Negrea & Bertrand Maillet & Emmanuel Jurczenko, 2002. "Revisited Multi-moment Approximate Option," FMG Discussion Papers dp430, Financial Markets Group.
    19. Chen, Rongda & Zhou, Hanxian & Yu, Lean & Jin, Chenglu & Zhang, Shuonan, 2021. "An efficient method for pricing foreign currency options," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
    20. Ángel León & Gonzalo Rubio & Gregorio Serna, 2004. "Autoregressive Conditional Volatility, Skewness And Kurtosis," Working Papers. Serie AD 2004-13, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-01521491. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.