IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-00144193.html
   My bibliography  Save this paper

Self decomposability and option pricing

Author

Listed:
  • Helyette Geman

    (DRM - Dauphine Recherches en Management - Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres - CNRS - Centre National de la Recherche Scientifique)

  • C. Peter M. Dilip Y. Marc

    (DRM - Dauphine Recherches en Management - Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres - CNRS - Centre National de la Recherche Scientifique)

Abstract

The risk-neutral process is modeled by a four parameter self-similar process of independent increments with a self-decomposable law for its unit time distribution. Six different processes in this general class are theoretically formulated and empirically investigated. We show that all six models are capable of adequately synthesizing European option prices across the spectrum of strikes and maturities at a point of time. Considerations of parameter stability over time suggest a preference for two of these models. Currently, there are several option pricing models with 610 free parameters that deliver a comparable level of performance in synthesizing option prices. The dimension reduction attained here should prove useful in studying the variation over time of option prices.

Suggested Citation

  • Helyette Geman & C. Peter M. Dilip Y. Marc, 2007. "Self decomposability and option pricing," Post-Print halshs-00144193, HAL.
  • Handle: RePEc:hal:journl:halshs-00144193
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dilip B. Madan & King Wang, 2023. "The valuation of corporations: a derivative pricing perspective," Annals of Finance, Springer, vol. 19(1), pages 1-21, March.
    2. N. Hilber & N. Reich & C. Schwab & C. Winter, 2009. "Numerical methods for Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 471-500, September.
    3. Dilip B. Madan & Wim Schoutens, 2019. "Arbitrage Free Approximations to Candidate Volatility Surface Quotations," JRFM, MDPI, vol. 12(2), pages 1-21, April.
    4. P. Peirano & D. Challet, 2012. "Baldovin-Stella stochastic volatility process and Wiener process mixtures," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 85(8), pages 1-12, August.
    5. Albrecher, Hansjoerg & Guillaume, Florence & Schoutens, Wim, 2013. "Implied liquidity: Model sensitivity," Journal of Empirical Finance, Elsevier, vol. 23(C), pages 48-67.
    6. Johannes Siven & Rolf Poulsen, 2009. "Auto-static for the people: risk-minimizing hedges of barrier options," Review of Derivatives Research, Springer, vol. 12(3), pages 193-211, October.
    7. Michele Leonardo Bianchi, 2012. "An empirical comparison of alternative credit default swap pricing models," Temi di discussione (Economic working papers) 882, Bank of Italy, Economic Research and International Relations Area.
    8. Wang, Yiming & Tong, Hanfei, 2008. "Modeling and estimating the jump risk of exchange rates: Applications to RMB," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(26), pages 6575-6583.
    9. Finlay, Richard & Seneta, Eugene, 2012. "A Generalized Hyperbolic model for a risky asset with dependence," Statistics & Probability Letters, Elsevier, vol. 82(12), pages 2164-2169.
    10. Madan, Dilip B. & Schoutens, Wim, 2013. "Systemic risk tradeoffs and option prices," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 222-230.
    11. Fabozzi, Frank J. & Leccadito, Arturo & Tunaru, Radu S., 2014. "Extracting market information from equity options with exponential Lévy processes," Journal of Economic Dynamics and Control, Elsevier, vol. 38(C), pages 125-141.
    12. Mathias Trabs, 2011. "Calibration of selfdecomposable Lévy models," SFB 649 Discussion Papers SFB649DP2011-073, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    13. Dilip B. Madan & Wim Schoutens, 2019. "Equilibrium Asset Returns In Financial Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(02), pages 1-43, March.
    14. Boris Buchmann & Kevin W. Lu & Dilip B. Madan, 2018. "Calibration for Weak Variance-Alpha-Gamma Processes," Papers 1801.08852, arXiv.org, revised Jul 2018.
    15. Dilip Madan, 2011. "Joint risk-neutral laws and hedging," IISE Transactions, Taylor & Francis Journals, vol. 43(12), pages 840-850.
    16. Bakshi, Gurdip & Panayotov, George, 2010. "First-passage probability, jump models, and intra-horizon risk," Journal of Financial Economics, Elsevier, vol. 95(1), pages 20-40, January.
    17. Patrizia Semeraro, 2022. "Multivariate tempered stable additive subordination for financial models," Mathematics and Financial Economics, Springer, volume 16, number 3, June.
    18. Ballotta, Laura & Rayée, Grégory, 2022. "Smiles & smirks: Volatility and leverage by jumps," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1145-1161.
    19. Massimo Arnone & Michele Leonardo Bianchi & Anna Grazia Quaranta & Gian Luca Tassinari, 2021. "Catastrophic risks and the pricing of catastrophe equity put options," Computational Management Science, Springer, vol. 18(2), pages 213-237, June.
    20. Patrizia Semeraro, 2021. "Multivariate tempered stable additive subordination for financial models," Papers 2105.00844, arXiv.org, revised Sep 2021.
    21. Shantanu Awasthi & Indranil SenGupta, 2020. "First exit-time analysis for an approximate Barndorff-Nielsen and Shephard model with stationary self-decomposable variance process," Papers 2006.07167, arXiv.org, revised Jan 2021.
    22. Dilip B. Madan & King Wang, 2022. "Two sided efficient frontiers at multiple time horizons," Annals of Finance, Springer, vol. 18(3), pages 327-353, September.
    23. Michele Azzone & Roberto Baviera, 2023. "A fast Monte Carlo scheme for additive processes and option pricing," Computational Management Science, Springer, vol. 20(1), pages 1-34, December.
    24. Boris Buchmann & Kevin W. Lu & Dilip B. Madan, 2019. "Calibration for Weak Variance-Alpha-Gamma Processes," Methodology and Computing in Applied Probability, Springer, vol. 21(4), pages 1151-1164, December.

    More about this item

    Keywords

    Mathematical Finance;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-00144193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.