IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-01761234.html
   My bibliography  Save this paper

Option valuation and hedging using asymmetric risk function: asymptotic optimality through fully nonlinear Partial Differential Equations

Author

Listed:
  • Emmanuel Gobet

    (CMAP - Centre de Mathématiques Appliquées - Ecole Polytechnique - X - École polytechnique - CNRS - Centre National de la Recherche Scientifique)

  • Isaque Pimentel

    (CMAP - Centre de Mathématiques Appliquées - Ecole Polytechnique - X - École polytechnique - CNRS - Centre National de la Recherche Scientifique, EDF - EDF)

  • Xavier Warin

    (EDF - EDF)

Abstract

Discrete time hedging produces a residual risk, namely, the tracking error. The major problem is to get valuation/hedging policies minimizing this error. We evaluate the risk between trading dates through a function penalizing asymmetrically profits and losses. After deriving the asymptotics within a discrete time risk measurement for a large number of trading dates, we derive the optimal strategies minimizing the asymptotic risk in the continuous time setting. We characterize the optimality through a class of fully nonlinear Partial Differential Equations (PDE). Numerical experiments show that the optimal strategies associated with discrete and asymptotic approach coincides asymptotically.

Suggested Citation

  • Emmanuel Gobet & Isaque Pimentel & Xavier Warin, 2020. "Option valuation and hedging using asymmetric risk function: asymptotic optimality through fully nonlinear Partial Differential Equations," Post-Print hal-01761234, HAL.
  • Handle: RePEc:hal:journl:hal-01761234
    DOI: 10.1007/s00780-020-00428-1
    Note: View the original document on HAL open archive server: https://hal.science/hal-01761234
    as

    Download full text from publisher

    File URL: https://hal.science/hal-01761234/document
    Download Restriction: no

    File URL: https://libkey.io/10.1007/s00780-020-00428-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. repec:dau:papers:123456789/4273 is not listed on IDEAS
    2. Frédéric Abergel & Nicolas Millot, 2011. "Nonquadratic Local Risk-Minimization for Hedging Contingent Claims in Incomplete Markets," Post-Print hal-00620843, HAL.
    3. Föllmer, H. & Schweizer, M., 1988. "Hedging by Sequential Regression: An Introduction to the Mathematics of Option Trading," ASTIN Bulletin, Cambridge University Press, vol. 18(2), pages 147-160, November.
    4. N. El Karoui & S. Peng & M. C. Quenez, 1997. "Backward Stochastic Differential Equations in Finance," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 1-71, January.
    5. Benoit Pochart & Jean-Philippe Bouchaud, 2004. "Option pricing and hedging with minimum local expected shortfall," Quantitative Finance, Taylor & Francis Journals, vol. 4(5), pages 607-618.
    6. Emmanuel Temam & Emmanuel Gobet, 2001. "Discrete time hedging errors for options with irregular payoffs," Finance and Stochastics, Springer, vol. 5(3), pages 357-367.
    7. Potters, Marc & Bouchaud, Jean-Philippe & Sestovic, Dragan, 2001. "Hedged Monte-Carlo: low variance derivative pricing with objective probabilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 289(3), pages 517-525.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emmanuel Gobet & Isaque Pimentel & Xavier Warin, 2018. "Option valuation and hedging using asymmetric risk function: asymptotic optimality through fully nonlinear Partial Differential Equations," Working Papers hal-01761234, HAL.
    2. Emmanuel Gobet & Isaque Pimentel & Xavier Warin, 2020. "Option valuation and hedging using an asymmetric risk function: asymptotic optimality through fully nonlinear partial differential equations," Finance and Stochastics, Springer, vol. 24(3), pages 633-675, July.
    3. Patrice Gaillardetz & Saeb Hachem, 2019. "Risk-Control Strategies," Papers 1908.02228, arXiv.org.
    4. Stefan Geiss & Emmanuel Gobet, 2010. "Fractional smoothness and applications in finance," Papers 1004.3577, arXiv.org.
    5. Chong, Wing Fung, 2019. "Pricing and hedging equity-linked life insurance contracts beyond the classical paradigm: The principle of equivalent forward preferences," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 93-107.
    6. Ludovic Gouden`ege & Andrea Molent & Antonino Zanette, 2023. "Backward Hedging for American Options with Transaction Costs," Papers 2305.06805, arXiv.org, revised Jun 2023.
    7. Stefan Geiss & Emmanuel Gobet, 2011. "Fractional smoothness and applications in Finance," Post-Print hal-00474803, HAL.
    8. Gobet, Emmanuel & Makhlouf, Azmi, 2010. "-time regularity of BSDEs with irregular terminal functions," Stochastic Processes and their Applications, Elsevier, vol. 120(7), pages 1105-1132, July.
    9. Delong, Łukasz & Dhaene, Jan & Barigou, Karim, 2019. "Fair valuation of insurance liability cash-flow streams in continuous time: Theory," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 196-208.
    10. Fujii, Masaaki & Takahashi, Akihiko, 2019. "Solving backward stochastic differential equations with quadratic-growth drivers by connecting the short-term expansions," Stochastic Processes and their Applications, Elsevier, vol. 129(5), pages 1492-1532.
    11. Bouchard Bruno & Tan Xiaolu & Zou Yiyi & Warin Xavier, 2017. "Numerical approximation of BSDEs using local polynomial drivers and branching processes," Monte Carlo Methods and Applications, De Gruyter, vol. 23(4), pages 241-263, December.
    12. Fan, ShengJun, 2016. "Existence of solutions to one-dimensional BSDEs with semi-linear growth and general growth generators," Statistics & Probability Letters, Elsevier, vol. 109(C), pages 7-15.
    13. Masaaki Fujii & Akihiko Takahashi, 2015. "Perturbative Expansion Technique for Non-linear FBSDEs with Interacting Particle Method," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 22(3), pages 283-304, September.
    14. Kupper, Michael & Luo, Peng & Tangpi, Ludovic, 2019. "Multidimensional Markovian FBSDEs with super-quadratic growth," Stochastic Processes and their Applications, Elsevier, vol. 129(3), pages 902-923.
    15. Mingyu Xu, 2007. "Reflected Backward SDEs with Two Barriers Under Monotonicity and General Increasing Conditions," Journal of Theoretical Probability, Springer, vol. 20(4), pages 1005-1039, December.
    16. Gobet, Emmanuel & Labart, Céline, 2007. "Error expansion for the discretization of backward stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 117(7), pages 803-829, July.
    17. Han, Xingyu, 2018. "Pricing and hedging vulnerable option with funding costs and collateral," Chaos, Solitons & Fractals, Elsevier, vol. 112(C), pages 103-115.
    18. Giorgia Callegaro & Alessandro Gnoatto & Martino Grasselli, 2021. "A Fully Quantization-based Scheme for FBSDEs," Working Papers 07/2021, University of Verona, Department of Economics.
    19. Dirk Becherer & Wilfried Kuissi-Kamdem & Olivier Menoukeu-Pamen, 2023. "Optimal consumption with labor income and borrowing constraints for recursive preferences," Working Papers hal-04017143, HAL.
    20. Tankov, Peter & Voltchkova, Ekaterina, 2009. "Asymptotic analysis of hedging errors in models with jumps," Stochastic Processes and their Applications, Elsevier, vol. 119(6), pages 2004-2027, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-01761234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.