IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-00651397.html
   My bibliography  Save this paper

Credit derivatives pricing with default density term structure modelled by Lévy random fields

Author

Listed:
  • Lijun Bo

    (Department of Mathematics, Xidian University - Xidian University)

  • Ying Jiao

    (Laboratoire de Sciences Actuarielle et Financière)

  • Xuewei Yang

    (School of Mathematical Sciences, Nankai University - Nankai University, 94 Weijin Road, Nankai District, Tianjin 300071 China)

Abstract

We model the term structure of the forward default intensity and the default density by using Lévy random fields, which allow us to consider the credit derivatives with an after-default recovery payment. As applications, we study the pricing of a defaultable bond and represent the pricing kernel as the unique solution of a parabolic integro-differential equation. Finally, we illustrate by numerical examples the impact of the contagious jump risks on the defaultable bond price in our model.

Suggested Citation

  • Lijun Bo & Ying Jiao & Xuewei Yang, 2014. "Credit derivatives pricing with default density term structure modelled by Lévy random fields," Post-Print hal-00651397, HAL.
  • Handle: RePEc:hal:journl:hal-00651397
    Note: View the original document on HAL open archive server: https://hal.science/hal-00651397
    as

    Download full text from publisher

    File URL: https://hal.science/hal-00651397/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ernst Eberlein & Sebastian Raible, 1999. "Term Structure Models Driven by General Lévy Processes," Mathematical Finance, Wiley Blackwell, vol. 9(1), pages 31-53, January.
    2. Ernst Eberlein & Jean Jacod & Sebastian Raible, 2005. "Lévy term structure models: No-arbitrage and completeness," Finance and Stochastics, Springer, vol. 9(1), pages 67-88, January.
    3. El Karoui, Nicole & Jeanblanc, Monique & Jiao, Ying, 2010. "What happens after a default: The conditional density approach," Stochastic Processes and their Applications, Elsevier, vol. 120(7), pages 1011-1032, July.
    4. Tomas Björk & Yuri Kabanov & Wolfgang Runggaldier, 1997. "Bond Market Structure in the Presence of Marked Point Processes," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 211-239, April.
    5. D. P. Kennedy, 1994. "The Term Structure Of Interest Rates As A Gaussian Random Field," Mathematical Finance, Wiley Blackwell, vol. 4(3), pages 247-258, July.
    6. Damir Filipović & Stefan Tappe, 2008. "Existence of Lévy term structure models," Finance and Stochastics, Springer, vol. 12(1), pages 83-115, January.
    7. D. P. Kennedy, 1997. "Characterizing Gaussian Models of the Term Structure of Interest Rates," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 107-118, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lijun Bo & Ying Jiao & Xuewei Yang, 2011. "Credit derivatives pricing with default density term structure modelled by L\'evy random fields," Papers 1112.2952, arXiv.org.
    2. Eckhard Platen & Steffan Tappe, 2015. "Real-World Forward Rate Dynamics With Affine Realizations," Published Paper Series 2015-7, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    3. Stefan Tappe, 2019. "Existence of affine realizations for L\'evy term structure models," Papers 1907.02363, arXiv.org.
    4. Jean Jacod & Philip Protter, 2010. "Risk-neutral compatibility with option prices," Finance and Stochastics, Springer, vol. 14(2), pages 285-315, April.
    5. Jacek Jakubowski & Jerzy Zabczyk, 2007. "Exponential moments for HJM models with jumps," Finance and Stochastics, Springer, vol. 11(3), pages 429-445, July.
    6. Belal E. Baaquie & Marakani Srikant & Mitch Warachka, 2002. "A Quantum Field Theory Term Structure Model Applied to Hedging," Papers cond-mat/0206457, arXiv.org.
    7. Eckhard Platen & Stefan Tappe, 2011. "Affine Realizations for Levy Driven Interest Rate Models with Real-World Forward Rate Dynamics," Research Paper Series 289, Quantitative Finance Research Centre, University of Technology, Sydney.
    8. Belal E. Baaquie & Marakani Srikant & Mitch C. Warachka, 2003. "A Quantum Field Theory Term Structure Model Applied to Hedging," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 6(05), pages 443-467.
    9. Damir Filipović & Stefan Tappe, 2008. "Existence of Lévy term structure models," Finance and Stochastics, Springer, vol. 12(1), pages 83-115, January.
    10. Albeverio, Sergio & Lytvynov, Eugene & Mahnig, Andrea, 2004. "A model of the term structure of interest rates based on Lévy fields," Stochastic Processes and their Applications, Elsevier, vol. 114(2), pages 251-263, December.
    11. Damir Filipovi'c & Stefan Tappe, 2019. "Existence of L\'evy term structure models," Papers 1907.03561, arXiv.org.
    12. Kimmel, Robert L., 2004. "Modeling the term structure of interest rates: A new approach," Journal of Financial Economics, Elsevier, vol. 72(1), pages 143-183, April.
    13. Gapeev, Pavel V., 2004. "On arbitrage and Markovian short rates in fractional bond markets," Statistics & Probability Letters, Elsevier, vol. 70(3), pages 211-222, December.
    14. Micha{l} Barski & Jerzy Zabczyk, 2015. "Forward rate models with linear volatilities," Papers 1512.05321, arXiv.org.
    15. Kerkhof, F.L.J., 2003. "Model risk analysis for risk management and option pricing," Other publications TiSEM 01692df5-4c2d-4ed2-8108-4, Tilburg University, School of Economics and Management.
    16. Santa-Clara, Pedro & Sornette, Didier, 2001. "The Dynamics of the Forward Interest Rate Curve with Stochastic String Shocks," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 149-185.
    17. Ole Barndorff-Nielsen & Elisa Nicolato & Neil Shephard, 2002. "Some recent developments in stochastic volatility modelling," Quantitative Finance, Taylor & Francis Journals, vol. 2(1), pages 11-23.
    18. Ernst Eberlein & Christoph Gerhart & Zorana Grbac, 2019. "Multiple curve Lévy forward price model allowing for negative interest rates," Post-Print hal-03898912, HAL.
    19. Bueno-Guerrero, Alberto & Moreno, Manuel & Navas, Javier F., 2016. "The stochastic string model as a unifying theory of the term structure of interest rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 217-237.
    20. Junker, Markus & Szimayer, Alex & Wagner, Niklas, 2006. "Nonlinear term structure dependence: Copula functions, empirics, and risk implications," Journal of Banking & Finance, Elsevier, vol. 30(4), pages 1171-1199, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-00651397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.