IDEAS home Printed from https://ideas.repec.org/p/gro/rugsom/02a68.html
   My bibliography  Save this paper

Look-ahead strategies for controlling batch operations in industry : basic insights in rule construction

Author

Listed:
  • Zee, Durk Jouke van der

    (Groningen University)

Abstract

Batching jobs in a manufacturing system is a very common policy in most industries. Main reasons for batching are avoidance of set ups and/or facilitation of material handling. Examples of batch-wise production systems are ovens found in aircraft industry and in semiconductor manufacturing. Starting from the early nineties much research efforts have been put in constructing strategies for the dynamic control of these systems in order to reduce cycle times. Typically, these so-called “look-ahead strategies” base their scheduling decision on the information on a few near future product arrivals. In this paper we give a literature overview of the developed strategies, consider basic insights in their construction and highlight issues for further research.

Suggested Citation

  • Zee, Durk Jouke van der, 2002. "Look-ahead strategies for controlling batch operations in industry : basic insights in rule construction," Research Report 02A68, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
  • Handle: RePEc:gro:rugsom:02a68
    as

    Download full text from publisher

    File URL: http://irs.ub.rug.nl/ppn/243987749
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Izak Duenyas & John Neale, 1997. "Stochastic scheduling of a batch processing machine with incompatible job families," Annals of Operations Research, Springer, vol. 70(0), pages 191-220, April.
    2. Potts, Chris N. & Kovalyov, Mikhail Y., 2000. "Scheduling with batching: A review," European Journal of Operational Research, Elsevier, vol. 120(2), pages 228-249, January.
    3. Scott Webster & Kenneth R. Baker, 1995. "Scheduling Groups of Jobs on a Single Machine," Operations Research, INFORMS, vol. 43(4), pages 692-703, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fowler, John W. & Mönch, Lars, 2022. "A survey of scheduling with parallel batch (p-batch) processing," European Journal of Operational Research, Elsevier, vol. 298(1), pages 1-24.
    2. repec:dgr:rugsom:02a68 is not listed on IDEAS
    3. Shen, Liji & Buscher, Udo, 2012. "Solving the serial batching problem in job shop manufacturing systems," European Journal of Operational Research, Elsevier, vol. 221(1), pages 14-26.
    4. Shisheng Li & T.C.E. Cheng & C.T. Ng & Jinjiang Yuan, 2017. "Two‐agent scheduling on a single sequential and compatible batching machine," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(8), pages 628-641, December.
    5. Cheng, T. C. Edwin & Janiak, Adam & Kovalyov, Mikhail Y., 2001. "Single machine batch scheduling with resource dependent setup and processing times," European Journal of Operational Research, Elsevier, vol. 135(1), pages 177-183, November.
    6. Li, Shisheng & Ng, C.T. & Cheng, T.C.E. & Yuan, Jinjiang, 2011. "Parallel-batch scheduling of deteriorating jobs with release dates to minimize the makespan," European Journal of Operational Research, Elsevier, vol. 210(3), pages 482-488, May.
    7. Hinder, Oliver & Mason, Andrew J., 2017. "A novel integer programing formulation for scheduling with family setup times on a single machine to minimize maximum lateness," European Journal of Operational Research, Elsevier, vol. 262(2), pages 411-423.
    8. Xiangtong Qi, 2005. "A logistics scheduling model: Inventory cost reduction by batching," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(4), pages 312-320, June.
    9. Selvarajah, Esaignani & Steiner, George, 2006. "Batch scheduling in a two-level supply chain--a focus on the supplier," European Journal of Operational Research, Elsevier, vol. 173(1), pages 226-240, August.
    10. Chang, Yung-Chia & Lee, Chung-Yee, 2004. "Machine scheduling with job delivery coordination," European Journal of Operational Research, Elsevier, vol. 158(2), pages 470-487, October.
    11. Artur Alves Pessoa & Teobaldo Bulhões & Vitor Nesello & Anand Subramanian, 2022. "Exact Approaches for Single Machine Total Weighted Tardiness Batch Scheduling," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1512-1530, May.
    12. Jun-Qiang Wang & Guo-Qiang Fan & Zhixin Liu, 2020. "Mixed batch scheduling on identical machines," Journal of Scheduling, Springer, vol. 23(4), pages 487-496, August.
    13. Grundel, Soesja & Çiftçi, Barış & Borm, Peter & Hamers, Herbert, 2013. "Family sequencing and cooperation," European Journal of Operational Research, Elsevier, vol. 226(3), pages 414-424.
    14. Shabtay, Dvir, 2014. "The single machine serial batch scheduling problem with rejection to minimize total completion time and total rejection cost," European Journal of Operational Research, Elsevier, vol. 233(1), pages 64-74.
    15. Ou, Jinwen & Lu, Lingfa & Zhong, Xueling, 2023. "Parallel-batch scheduling with rejection: Structural properties and approximation algorithms," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1017-1032.
    16. Schaller, Jeffrey, 2007. "Scheduling on a single machine with family setups to minimize total tardiness," International Journal of Production Economics, Elsevier, vol. 105(2), pages 329-344, February.
    17. Ciftci, B.B. & Borm, P.E.M. & Hamers, H.J.M. & Slikker, M., 2008. "Batch Sequencing and Cooperation," Other publications TiSEM ed1f8fce-da76-41a6-9a9e-9, Tilburg University, School of Economics and Management.
    18. Xiuli Wang & T. C. Edwin Cheng, 2007. "Machine scheduling with an availability constraint and job delivery coordination," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(1), pages 11-20, February.
    19. Beat Gfeller & Leon Peeters & Birgitta Weber & Peter Widmayer, 2009. "Single machine batch scheduling with release times," Journal of Combinatorial Optimization, Springer, vol. 17(3), pages 323-338, April.
    20. Chuleeporn Kusoncum & Kanchana Sethanan & Richard F. Hartl & Thitipong Jamrus, 2022. "Modified differential evolution and heuristic algorithms for dump tippler machine allocation in a typical sugar mill in Thailand," Operational Research, Springer, vol. 22(5), pages 5863-5895, November.
    21. Malapert, Arnaud & Guéret, Christelle & Rousseau, Louis-Martin, 2012. "A constraint programming approach for a batch processing problem with non-identical job sizes," European Journal of Operational Research, Elsevier, vol. 221(3), pages 533-545.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gro:rugsom:02a68. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Hanneke Tamling (email available below). General contact details of provider: https://edirc.repec.org/data/ferugnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.