IDEAS home Printed from https://ideas.repec.org/p/esy/uefcwp/34837.html
   My bibliography  Save this paper

Forecasting Value-at-Risk using deep neural network quantile regression

Author

Listed:
  • Chronopoulos, Ilias
  • Raftapostolos, Aristeidis
  • Kapetanios, George

Abstract

In this paper we use a deep quantile estimator, based on neural networks and their universal approximation property to examine a non-linear association between the conditional quantiles of a dependent variable and predictors. This methodology is versatile and allows both the use of different penalty functions, as well as high dimensional covariates. We present a Monte Carlo exercise where we examine the finite sample properties of the deep quantile estimator and show that it delivers good finite sample performance. We use the deep quantile estimator to forecast Value-at-Risk and find significant gains over linear quantile regression alternatives and other models, which are supported by various testing schemes. Further, we consider also an alternative architecture that allows the use of mixed frequency data in neural networks. This paper also contributes to the interpretability of neural networks output by making comparisons between the commonly used SHAP values and an alternative method based on partial derivatives.

Suggested Citation

  • Chronopoulos, Ilias & Raftapostolos, Aristeidis & Kapetanios, George, 2023. "Forecasting Value-at-Risk using deep neural network quantile regression," Essex Finance Centre Working Papers 34837, University of Essex, Essex Business School.
  • Handle: RePEc:esy:uefcwp:34837
    as

    Download full text from publisher

    File URL: https://repository.essex.ac.uk/34837/
    File Function: original version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christis Katsouris, 2023. "High Dimensional Time Series Regression Models: Applications to Statistical Learning Methods," Papers 2308.16192, arXiv.org.
    2. Philippe Goulet Coulombe & Mikael Frenette & Karin Klieber, 2023. "From Reactive to Proactive Volatility Modeling with Hemisphere Neural Networks," Papers 2311.16333, arXiv.org, revised Apr 2024.

    More about this item

    Keywords

    Quantile regression; machine learning; neural networks; value-at-risk; forecasting;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:esy:uefcwp:34837. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nikolaos Vlastakis (email available below). General contact details of provider: https://edirc.repec.org/data/fcessuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.