Advanced Search
MyIDEAS: Login

Semiparametric Instrumental Variables Estimation and Its Application to Dynamic Oligopoly

Contents:

Author Info

  • Sangin Park

    (SUNY at Stony Brook)

Registered author(s):

    Abstract

    This paper considers a semiparametric regression model in which the error term is correlated with the nonparametric part. An example of this regression model can be found in structural models of dynamic oligopoly. Dynamic oligopoly is a situation in which firms' price-settings (or quantity-settings) are strategically interdependent and have durable effects on the stream of their profits. Dynamic oligopoly fits many industries characterized by the significance of network externalities, learning-by-doing, and informational product differentiation. For a dynamic structural model of the representative agent, the Euler-equation-based estimation technique is usually employed. However, the Euler equations cannot be generally obtained in dynamic oligopoly. As an alternative, we can consider an estimation procedure as follows. Under some regularity conditions, a firm's optimal pricing (or quantity-setting) in dynamic oligopoly can be formulated as a continuous Markov decision problem (MDP). Then we may apply an estimation procedure similar to the nested fixed point algorithm: using ad hoc assumptions for stochastic specification of the evolution of state variables, we may calculate each firm's value functions in equilibrium for each candidate value of the parameter vector and then search for the value of the parameter vector that maximizes the (log) likelihood function or minimizes some distance. It is, however, impractical to implement this estimation procedure in the case of dynamic oligopoly. Most of all, it will result in a prohibitive computational burden. It is well known that continuous MDPs have the problem of Bellman's curse of dimensionality. Even with some simple discretization assumptions and a stochastic algorithm to break the curse of dimensionality, the computational burden to calculate the equilibrium value functions for just one candidate value of the parameter vector is usually huge. In addition, the complexity of the estimation problem usually makes it difficult to determine the robustness of the conclusions to the ad hoc stochastic assumptions. Furthermore, if the stochastic process is misspecified, the estimator for the parameter vector is generally inconsistent. The estimation procedure suggested in this paper, however, enables us to semiparametrically estimate a class of structural models of dynamic oligopoly. It will be shown that first-order profit maximization conditions of dynamic oligopoly may lead to our generic semiparametric regression model. A technical difficulty of this semiparametric regression model, however, is that we can not eliminate the nonparametric part in the two-step estimation procedure of a typical semiparametric regression model. Yet, we can still obtain a semiparametric estimator, called a semiparametric instrumental variables (SIV) estimator, with consistency and asymptotic normality if there exist two sets of instrumental variables (IVs) satisfying both an identification condition and an orthogonality condition. Our estimation plan is as follows. In order to eliminate the nonparametric part, we first filter the nonparametric part by the first set of IVs. For identification, we need the second set of IVs which is not a function of the first set of IVs and must be orthogonal to the filtering error. The paper provides two generic examples in which we can construct these two sets of IVs and then discusses an empirical example of the application of the SIV estimation procedure to estimate network effects in the U.S. home VCR market during the years 1981 - 1988.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://fmwww.bc.edu/RePEc/es2000/0432a.pdf
    File Function: main text
    Download Restriction: no

    File URL: http://fmwww.bc.edu/RePEc/es2000/0432b.pdf
    File Function: main text
    Download Restriction: no

    File URL: http://fmwww.bc.edu/RePEc/es2000/0432c.pdf
    File Function: main text
    Download Restriction: no

    Bibliographic Info

    Paper provided by Econometric Society in its series Econometric Society World Congress 2000 Contributed Papers with number 0432.

    as in new window
    Length:
    Date of creation: 01 Aug 2000
    Date of revision:
    Handle: RePEc:ecm:wc2000:0432

    Contact details of provider:
    Phone: 1 212 998 3820
    Fax: 1 212 995 4487
    Email:
    Web page: http://www.econometricsociety.org/pastmeetings.asp
    More information through EDIRC

    Related research

    Keywords:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Chamberlain, Gary, 1992. "Efficiency Bounds for Semiparametric Regression," Econometrica, Econometric Society, vol. 60(3), pages 567-96, May.
    2. Berry, Steven & Levinsohn, James & Pakes, Ariel, 1995. "Automobile Prices in Market Equilibrium," Econometrica, Econometric Society, vol. 63(4), pages 841-90, July.
    3. Donald W.K. Andrews, 1988. "Asymptotic Normality of Series Estimators for Nonparametric and Semiparametric Regression Models," Cowles Foundation Discussion Papers 874R, Cowles Foundation for Research in Economics, Yale University, revised May 1989.
    4. Whitney Newey & James Powell & Francis Vella, 1998. "Nonparametric Estimation of Triangular Simultaneous Equations Models," Working papers 98-16, Massachusetts Institute of Technology (MIT), Department of Economics.
    5. Pakes, Ariel & Olley, Steven, 1995. "A limit theorem for a smooth class of semiparametric estimators," Journal of Econometrics, Elsevier, vol. 65(1), pages 295-332, January.
    6. Chunrong Ai, 1997. "A Semiparametric Maximum Likelihood Estimator," Econometrica, Econometric Society, vol. 65(4), pages 933-964, July.
    7. Hansen, Lars Peter & Singleton, Kenneth J, 1982. "Generalized Instrumental Variables Estimation of Nonlinear Rational Expectations Models," Econometrica, Econometric Society, vol. 50(5), pages 1269-86, September.
    8. Pakes, Ariel & Pollard, David, 1989. "Simulation and the Asymptotics of Optimization Estimators," Econometrica, Econometric Society, vol. 57(5), pages 1027-57, September.
    9. Ericson, Richard & Pakes, Ariel, 1995. "Markov-Perfect Industry Dynamics: A Framework for Empirical Work," Review of Economic Studies, Wiley Blackwell, vol. 62(1), pages 53-82, January.
    10. Schmalensee, Richard, 1982. "Product Differentiation Advantages of Pioneering Brands," American Economic Review, American Economic Association, vol. 72(3), pages 349-65, June.
    11. Ariel Pakes, 1991. "Dynamic Structural Models: Problems and Prospects. Mixed Continuous Discrete Controls and Market Interactions," Cowles Foundation Discussion Papers 984, Cowles Foundation for Research in Economics, Yale University.
    12. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-54, July.
    13. Ariel Pakes & Paul McGuire, 1997. "Stochastic Algorithms for Dynamic Models: Markov Perfect Equilibrium, and the 'Curse' of Dimensionality," Cowles Foundation Discussion Papers 1144, Cowles Foundation for Research in Economics, Yale University.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:ecm:wc2000:0432. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.