IDEAS home Printed from https://ideas.repec.org/p/cpr/ceprdp/13447.html
   My bibliography  Save this paper

How fast is this novel technology going to be a hit?

Author

Listed:
  • Veugelers, Reinhilde
  • Pezzoni, Michele

Abstract

Despite the high interest of scholars in identifying successful inventions, little attention has been devoted to investigate how (fast) the novel ideas embodied in original inventions are re-used in follow-on inventions. We overcome this limitation by empirically mapping and characterizing the trajectory of novel technologies’ re-use in follow-on inventions. Specifically, we consider the factors affecting the time needed for a novel technology to be legitimated as well as to reach its full technological impact. We analyze how these diffusion dynamics are affected by the antecedent characteristics of the novel technology. We characterize novel technologies as those that make new combinations with existing technological components and trace these new combinations in follow-on inventions. We find that novel technologies combining for the first time technological components which are similar and which are familiar to the inventors’ community require a short time to be legitimated but show a low technological impact. In contrast, combining for the first time technological components with a science-based nature generates technologies with a long legitimation time but also high technological impact.

Suggested Citation

  • Veugelers, Reinhilde & Pezzoni, Michele, 2019. "How fast is this novel technology going to be a hit?," CEPR Discussion Papers 13447, C.E.P.R. Discussion Papers.
  • Handle: RePEc:cpr:ceprdp:13447
    as

    Download full text from publisher

    File URL: https://cepr.org/publications/DP13447
    Download Restriction: CEPR Discussion Papers are free to download for our researchers, subscribers and members. If you fall into one of these categories but have trouble downloading our papers, please contact us at subscribers@cepr.org
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James G. March, 1991. "Exploration and Exploitation in Organizational Learning," Organization Science, INFORMS, vol. 2(1), pages 71-87, February.
    2. Bronwyn H. Hall, 2004. "Innovation and Diffusion," NBER Working Papers 10212, National Bureau of Economic Research, Inc.
    3. Verhoeven, Dennis & Bakker, Jurriën & Veugelers, Reinhilde, 2016. "Measuring technological novelty with patent-based indicators," Research Policy, Elsevier, vol. 45(3), pages 707-723.
    4. Stoneman, Paul & Battisti, Giuliana, 2010. "The Diffusion of New Technology," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 733-760, Elsevier.
    5. Sam Arts & Francesco Paolo Appio & Bart Looy, 2013. "Inventions shaping technological trajectories: do existing patent indicators provide a comprehensive picture?," Scientometrics, Springer;Akadémiai Kiadó, vol. 97(2), pages 397-419, November.
    6. Klevorick, Alvin K. & Levin, Richard C. & Nelson, Richard R. & Winter, Sidney G., 1995. "On the sources and significance of interindustry differences in technological opportunities," Research Policy, Elsevier, vol. 24(2), pages 185-205, March.
    7. Birgitte Andersen, 1999. "The hunt for S-shaped growth paths in technological innovation: a patent study," Journal of Evolutionary Economics, Springer, vol. 9(4), pages 487-526.
    8. Dan Andrews & Chiara Criscuolo & Peter N. Gal, 2015. "Frontier Firms, Technology Diffusion and Public Policy: Micro Evidence from OECD Countries," OECD Productivity Working Papers 2, OECD Publishing.
    9. Strumsky, Deborah & Lobo, José, 2015. "Identifying the sources of technological novelty in the process of invention," Research Policy, Elsevier, vol. 44(8), pages 1445-1461.
    10. Caviggioli, Federico, 2016. "Technology fusion: Identification and analysis of the drivers of technology convergence using patent data," Technovation, Elsevier, vol. 55, pages 22-32.
    11. Breschi, Stefano & Malerba, Franco & Orsenigo, Luigi, 2000. "Technological Regimes and Schumpeterian Patterns of Innovation," Economic Journal, Royal Economic Society, vol. 110(463), pages 388-410, April.
    12. Adam B. Jaffe, 2002. "Building Programme Evaluation into the Design of Public Research-Support Programmes," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 18(1), pages 22-34, Spring.
    13. Geroski, P. A., 2000. "Models of technology diffusion," Research Policy, Elsevier, vol. 29(4-5), pages 603-625, April.
    14. Meyer-Krahmer, Frieder & Schmoch, Ulrich, 1998. "Science-based technologies: university-industry interactions in four fields," Research Policy, Elsevier, vol. 27(8), pages 835-851, December.
    15. Dosi, Giovanni, 1993. "Technological paradigms and technological trajectories : A suggested interpretation of the determinants and directions of technical change," Research Policy, Elsevier, vol. 22(2), pages 102-103, April.
    16. Achilladelis, Basil, 1993. "The dynamics of technological innovation: The sector of antibacterial medicines," Research Policy, Elsevier, vol. 22(4), pages 279-308, August.
    17. Lee Fleming, 2001. "Recombinant Uncertainty in Technological Search," Management Science, INFORMS, vol. 47(1), pages 117-132, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Balland, Pierre-Alexandre & Boschma, Ron, 2022. "Do scientific capabilities in specific domains matter for technological diversification in European regions?," Research Policy, Elsevier, vol. 51(10).
    2. Engström, Emma & Strimling, Pontus, 2020. "Deep learning diffusion by infusion into preexisting technologies – Implications for users and society at large," Technology in Society, Elsevier, vol. 63(C).
    3. Sandro Montresor & Gianluca Orsatti & Francesco Quatraro, 2023. "Technological novelty and key enabling technologies: evidence from European regions," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 32(6), pages 851-872, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pezzoni, Michele & Veugelers, Reinhilde & Visentin, Fabiana, 2022. "How fast is this novel technology going to be a hit? Antecedents predicting follow-on inventions," Research Policy, Elsevier, vol. 51(3).
    2. Michele Pezzoni & Reinhilde Veugelers & Fabiana Visentin, 2018. "Is This Novel Technology Going to be a Hit? Antecedents Predicting Technological Novelty Diffusion," GREDEG Working Papers 2018-22, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), Université Côte d'Azur, France.
    3. Ron Boschma & Ernest Miguelez & Rosina Moreno & Diego B. Ocampo-Corrales, 2021. "Technological breakthroughs in European regions: the role of related and unrelated combinations," Papers in Evolutionary Economic Geography (PEEG) 2118, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Jun 2021.
    4. Plantec, Quentin & Deval, Marie-Alix & Hooge, Sophie & Weil, Benoit, 2023. "Big data as an exploration trigger or problem-solving patch: Design and integration of AI-embedded systems in the automotive industry," Technovation, Elsevier, vol. 124(C).
    5. Dosi, Giovanni & Nelson, Richard R., 2010. "Technical Change and Industrial Dynamics as Evolutionary Processes," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 51-127, Elsevier.
    6. William Arant & Dirk Fornahl & Nils Grashof & Kolja Hesse & Cathrin Söllner, 2019. "University-industry collaborations—The key to radical innovations? [Universität-Industrie-Kooperationen – Der Schlüssel zu radikalen Innovationen?]," Review of Regional Research: Jahrbuch für Regionalwissenschaft, Springer;Gesellschaft für Regionalforschung (GfR), vol. 39(2), pages 119-141, October.
    7. Nils Grashof & Holger Graf, 2023. "Universities that matter for regional knowledge base renewal - the role of multilevel embeddedness," Jena Economics Research Papers 2023-009, Friedrich-Schiller-University Jena.
    8. Gerard George & Reddi Kotha & Yanfeng Zheng, 2008. "Entry into Insular Domains: A Longitudinal Study of Knowledge Structuration and Innovation in Biotechnology Firms," Journal of Management Studies, Wiley Blackwell, vol. 45(8), pages 1448-1474, December.
    9. Nils Grashof & Alexander Kopka, 2023. "Artificial intelligence and radical innovation: an opportunity for all companies?," Small Business Economics, Springer, vol. 61(2), pages 771-797, August.
    10. Jee, Su Jung & Kwon, Minji & Ha, Jung Moon & Sohn, So Young, 2019. "Exploring the forward citation patterns of patents based on the evolution of technology fields," Journal of Informetrics, Elsevier, vol. 13(4).
    11. Corradini, Carlo & De Propris, Lisa, 2017. "Beyond local search: Bridging platforms and inter-sectoral technological integration," Research Policy, Elsevier, vol. 46(1), pages 196-206.
    12. Kathryn Rudie Harrigan & Maria Chiara Guardo & Bo Cowgill, 2017. "Multiplicative-innovation synergies: tests in technological acquisitions," The Journal of Technology Transfer, Springer, vol. 42(5), pages 1212-1233, October.
    13. Verhoeven, Dennis & Bakker, Jurriën & Veugelers, Reinhilde, 2016. "Measuring technological novelty with patent-based indicators," Research Policy, Elsevier, vol. 45(3), pages 707-723.
    14. Dirk Fornahl & Nils Grashof & Alexander Kopka, 2021. "Do not neglect the periphery?! - the emergence and diffusion of radical innovations," Bremen Papers on Economics & Innovation 2102, University of Bremen, Faculty of Business Studies and Economics.
    15. Giovanni Dosi & Richard Nelson, 2013. "The Evolution of Technologies: An Assessment of the State-of-the-Art," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 3(1), pages 3-46, June.
    16. Bart Leten & Rene Belderbos & Bart Van Looy, 2016. "Entry and Technological Performance in New Technology Domains: Technological Opportunities, Technology Competition and Technological Relatedness," Journal of Management Studies, Wiley Blackwell, vol. 53(8), pages 1257-1291, December.
    17. Silvestri, Daniela & Riccaboni, Massimo & Della Malva, Antonio, 2018. "Sailing in all winds: Technological search over the business cycle," Research Policy, Elsevier, vol. 47(10), pages 1933-1944.
    18. Yan, Hong-Bin & Li, Ming, 2022. "Consumer demand based recombinant search for idea generation," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    19. Kolja Hesse & Dirk Fornahl, 2020. "Essential ingredients for radical innovations? The role of (un‐)related variety and external linkages in Germany," Papers in Regional Science, Wiley Blackwell, vol. 99(5), pages 1165-1183, October.
    20. Apa, Roberta & De Noni, Ivan & Orsi, Luigi & Sedita, Silvia Rita, 2018. "Knowledge space oddity: How to increase the intensity and relevance of the technological progress of European regions," Research Policy, Elsevier, vol. 47(9), pages 1700-1712.

    More about this item

    Keywords

    Technological novelty; Diffusion; Combinatorial components; Patent data;
    All these keywords.

    JEL classification:

    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cpr:ceprdp:13447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://www.cepr.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.