# Sensible parameters for polynomials and other splines

## Author Info

• Roger Newson

()
(National Heart and Lung Institute, Imperial College London)

## Abstract

Splines, including polynomials, are traditionally used to model nonlinear relationships involving continuous predictors. However, when they are included in linear models (or generalized linear models), the estimated parameters for polynomials are not easy for nonmathematicians to understand, and the estimated parameters for other splines are often not easy even for mathematicians to understand. It would be easier if the parameters were differences or ratios between the values of the spline at the reference points and the value of the spline at a base reference point or if the parameters were values of the polynomial or spline at reference points on the x-axis, or The bspline package can be downloaded from Statistical Software Components, and generates spline bases for inclusion in the design matrices of linear models, based on Schoenberg B-splines. The package now has a recently added module flexcurv, which inputs a sequence of reference points on the x-axis and outputs a spline basis, based on equally spaced knots generated automatically, whose parameters are the values of the spline at the reference points. This spline basis can be modified by excluding the spline vector at a base reference point and including the unit vector. If this is done, then the parameter corresponding to the unit vector will be the value of the spline at the base reference point, and the parameters corresponding to the remaining reference spline vectors will be differences between the values of the spline at the corresponding reference points and the value of the spline at the base reference point. The spline bases are therefore extensions, to continuous factors, of the bases of unit vectors and/or indicator functions used to model discrete factors. It is possible to combine these bases for different continuous and/or discrete factors in the same way, using product bases in a design matrix to estimate factor-value combination means and/or factor-value effects and/or factor interactions.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://repec.org/usug2011/UK11_newson.pdf
File Function: presentation materials

File URL: http://repec.org/usug2011/UK11_newson_dofiles1.zip
File Function: sample do-files

## Bibliographic Info

Paper provided by Stata Users Group in its series United Kingdom Stata Users' Group Meetings 2011 with number 01.

as in new window
Length:
Date of revision:
Handle: RePEc:boc:usug11:01

Contact details of provider:
Web page: http://www.stata.com/meeting/uk11

## Related research

Keywords:

This paper has been announced in the following NEP Reports:

## References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
1. Roger Newson, 2001. "B-splines and splines parameterized by their values at reference points on the x-axis," Stata Technical Bulletin, StataCorp LP, vol. 10(57).
2. Roger Newson, 2001. "Splines with parameters that can be explained in words to non-mathematicians," United Kingdom Stata Users' Group Meetings 2001 11, Stata Users Group.
Full references (including those not matched with items on IDEAS)

## Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

## Corrections

When requesting a correction, please mention this item's handle: RePEc:boc:usug11:01. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F Baum).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.