IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2401.09233.html
   My bibliography  Save this paper

A closer look at the chemical potential of an ideal agent system

Author

Listed:
  • Christoph J. Borner
  • Ingo Hoffmann
  • John H. Stiebel

Abstract

Models for spin systems known from statistical physics are used in econometrics in the form of agent-based models. Econophysics research in econometrics is increasingly developing general market models that describe exchange phenomena and use the chemical potential $\mu$ known from physics in the context of particle number changes. In statistical physics, equations of state are known for the chemical potential, which take into account the respective model framework and the corresponding state variables. A simple transfer of these equations of state to problems in econophysics appears difficult. To the best of our knowledge, the equation of state for the chemical potential is currently missing even for the simplest conceivable model of an ideal agent system. In this paper, this research gap is closed and the equation of state for the chemical potential is derived from the econophysical model assumptions of the ideal agent system. An interpretation of the equation of state leads to fundamental relationships that could also have been guessed, but are shown here by the theory.

Suggested Citation

  • Christoph J. Borner & Ingo Hoffmann & John H. Stiebel, 2024. "A closer look at the chemical potential of an ideal agent system," Papers 2401.09233, arXiv.org.
  • Handle: RePEc:arx:papers:2401.09233
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2401.09233
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sousa, Tânia & Domingos, Tiago, 2006. "Equilibrium econophysics: A unified formalism for neoclassical economics and equilibrium thermodynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 492-512.
    2. A. Chakraborti & I. Muni-Toke & M. Patriarca & F. Abergel, 2011. "Econophysics Review : II. Agent-based models," Post-Print hal-03332946, HAL.
    3. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: II. Agent-based models," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 1013-1041.
    4. R'emi Lemoy & Eric Bertin & Pablo Jensen, 2010. "Socio-economic utility and chemical potential," Papers 1010.3225, arXiv.org, revised Feb 2011.
    5. H. Kleinert & X. J. Chen, 2006. "Boltzmann Distribution and Temperature of Stock Markets," Papers physics/0609209, arXiv.org, revised Apr 2007.
    6. Kestutis Staliunas, 2003. "Bose-Einstein Condensation in Financial Systems," Papers cond-mat/0303271, arXiv.org.
    7. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: I. Empirical facts," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 991-1012.
    8. Quentin Michard & Jean-Philippe Bouchaud, 2005. "Theory of collective opinion shifts: from smooth trends to abrupt swings," Science & Finance (CFM) working paper archive 500060, Science & Finance, Capital Fund Management.
    9. Q. Michard & J.-P. Bouchaud, 2005. "Theory of collective opinion shifts: from smooth trends to abrupt swings," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 47(1), pages 151-159, September.
    10. Wonseok Oh & Sangyong Jeon, 2007. "Membership Herding and Network Stability in the Open Source Community: The Ising Perspective," Management Science, INFORMS, vol. 53(7), pages 1086-1101, July.
    11. Vincenzo Crescimanna & Luca Di Persio, 2016. "Herd Behavior and Financial Crashes: An Interacting Particle System Approach," Journal of Mathematics, Hindawi, vol. 2016, pages 1-7, February.
    12. Zhang, Bo & Wang, Jun & Fang, Wen, 2015. "Volatility behavior of visibility graph EMD financial time series from Ising interacting system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 301-314.
    13. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: II. Agent-based models," Post-Print hal-00621059, HAL.
    14. Rémi Lemoy & Eric Bertin & Pablo Jensen, 2011. "Socio-economic utility and chemical potential," Post-Print hal-00909788, HAL.
    15. Christoph J. Borner & Ingo Hoffmann & John H. Stiebel, 2023. "On the Connection between Temperature and Volatility in Ideal Agent Systems," Papers 2303.15164, arXiv.org.
    16. Kozuki, Naoki & Fuchikami, Nobuko, 2003. "Dynamical model of financial markets: fluctuating ‘temperature’ causes intermittent behavior of price changes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 329(1), pages 222-230.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jean-Philippe Bouchaud, 2012. "Crises and collective socio-economic phenomena: simple models and challenges," Papers 1209.0453, arXiv.org, revised Dec 2012.
    2. Kiran Sharma & Subhradeep Das & Anirban Chakraborti, 2017. "Global Income Inequality and Savings: A Data Science Perspective," Papers 1801.00253, arXiv.org, revised Aug 2018.
    3. Ban Zheng & François Roueff & Frédéric Abergel, 2014. "Ergodicity and scaling limit of a constrained multivariate Hawkes process," Post-Print hal-00777941, HAL.
    4. Hong Guo & Jianwu Lin & Fanlin Huang, 2023. "Market Making with Deep Reinforcement Learning from Limit Order Books," Papers 2305.15821, arXiv.org.
    5. Fei Cao & Sebastien Motsch, 2021. "Derivation of wealth distributions from biased exchange of money," Papers 2105.07341, arXiv.org.
    6. Pierre Gosselin & Aïleen Lotz & Marc Wambst, 2020. "A path integral approach to business cycle models with large number of agents," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 15(4), pages 899-942, October.
    7. Pierre Gosselin & Aïleen Lotz & Marc Wambst, 2019. "A Statistical Field Approach to Capital Accumulation," Working Papers hal-02280634, HAL.
    8. repec:hal:wpaper:hal-00777941 is not listed on IDEAS
    9. Pierre Gosselin & Aïleen Lotz & Marc Wambst, 2017. "A Path Integral Approach to Interacting Economic Systems with Multiple Heterogeneous Agents," Working Papers hal-01549586, HAL.
    10. Ivan Jericevich & Patrick Chang & Tim Gebbie, 2021. "Simulation and estimation of an agent-based market-model with a matching engine," Papers 2108.07806, arXiv.org, revised Aug 2021.
    11. Inoua, Sabiou M. & Smith, Vernon L., 2023. "A classical model of speculative asset price dynamics," Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).
    12. Nikolaos Th. Chatzarakis, 2021. "Revisiting the role and consequences of Econophysics from a Marxian perspective," Bulletin of Political Economy, Bulletin of Political Economy, vol. 15(1), pages 45-68, June.
    13. Ban Zheng & Franc{c}ois Roueff & Fr'ed'eric Abergel, 2013. "Ergodicity and scaling limit of a constrained multivariate Hawkes process," Papers 1301.5007, arXiv.org, revised Feb 2014.
    14. Martin Šmíd, 2016. "Estimation of zero-intelligence models by L1 data," Quantitative Finance, Taylor & Francis Journals, vol. 16(9), pages 1423-1444, September.
    15. Pierre Gosselin & Aïleen Lotz & Marc Wambst, 2021. "A statistical field approach to capital accumulation," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 16(4), pages 817-908, October.
    16. Salvador Pueyo, 2013. "Is it a power law distribution? The case of economic contractions," Papers 1310.2567, arXiv.org.
    17. Ignacio Ormazábal & F. A. Borotto & H. F. Astudillo, 2017. "Influence of Money Distribution on Civil Violence Model," Complexity, Hindawi, vol. 2017, pages 1-15, November.
    18. Pierre Gosselin & Aïleen Lotz & Marc Wambst, 2018. "A Path Integral Approach to Business Cycle Models with Large Number of Agents," Working Papers hal-01893556, HAL.
    19. Anirban Chakraborti & Hrishidev & Kiran Sharma & Hirdesh K. Pharasi, 2019. "Phase separation and scaling in correlation structures of financial markets," Papers 1910.06242, arXiv.org, revised Jul 2020.
    20. Christoph J. Borner & Ingo Hoffmann & John H. Stiebel, 2023. "On the Connection between Temperature and Volatility in Ideal Agent Systems," Papers 2303.15164, arXiv.org.
    21. Andrea Monaco & Matteo Ghio & Adamaria Perrotta, 2024. "Wealth dynamics in a multi-aggregate closed monetary system," Papers 2401.09871, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2401.09233. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.