IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2310.16703.html
   My bibliography  Save this paper

No-Arbitrage Deep Calibration for Volatility Smile and Skewness

Author

Listed:
  • Kentaro Hoshisashi
  • Carolyn E. Phelan
  • Paolo Barucca

Abstract

Volatility smile and skewness are two key properties of option prices that are represented by the implied volatility (IV) surface. However, IV surface calibration through nonlinear interpolation is a complex problem due to several factors, including limited input data, low liquidity, and noise. Additionally, the calibrated surface must obey the fundamental financial principle of the absence of arbitrage, which can be modeled by various differential inequalities over the partial derivatives of the option price with respect to the expiration time and the strike price. To address these challenges, we have introduced a Derivative-Constrained Neural Network (DCNN), which is an enhancement of a multilayer perceptron (MLP) that incorporates derivatives in the objective function. DCNN allows us to generate a smooth surface and incorporate the no-arbitrage condition thanks to the derivative terms in the loss function. In numerical experiments, we train the model using prices generated with the SABR model to produce smile and skewness parameters. We carry out different settings to examine the stability of the calibrated model under different conditions. The results show that DCNNs improve the interpolation of the implied volatility surface with smile and skewness by integrating the computation of the derivatives, which are necessary and sufficient no-arbitrage conditions. The developed algorithm also offers practitioners an effective tool for understanding expected market dynamics and managing risk associated with volatility smile and skewness.

Suggested Citation

  • Kentaro Hoshisashi & Carolyn E. Phelan & Paolo Barucca, 2023. "No-Arbitrage Deep Calibration for Volatility Smile and Skewness," Papers 2310.16703, arXiv.org, revised Jan 2024.
  • Handle: RePEc:arx:papers:2310.16703
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2310.16703
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ait-Sahalia, Yacine & Duarte, Jefferson, 2003. "Nonparametric option pricing under shape restrictions," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 9-47.
    2. Vedant Choudhary & Sebastian Jaimungal & Maxime Bergeron, 2023. "FuNVol: A Multi-Asset Implied Volatility Market Simulator using Functional Principal Components and Neural SDEs," Papers 2303.00859, arXiv.org, revised Dec 2023.
    3. Huisu Jang & Jaewook Lee, 2019. "Generative Bayesian neural network model for risk-neutral pricing of American index options," Quantitative Finance, Taylor & Francis Journals, vol. 19(4), pages 587-603, April.
    4. Fengler, Matthias R. & Hin, Lin-Yee, 2015. "Semi-nonparametric estimation of the call-option price surface under strike and time-to-expiry no-arbitrage constraints," Journal of Econometrics, Elsevier, vol. 184(2), pages 242-261.
    5. Blanka Horvath & Aitor Muguruza & Mehdi Tomas, 2021. "Deep learning volatility: a deep neural network perspective on pricing and calibration in (rough) volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 21(1), pages 11-27, January.
    6. Rubinstein, Mark, 1985. "Nonparametric Tests of Alternative Option Pricing Models Using All Reported Trades and Quotes on the 30 Most Active CBOE Option Classes from August 23, 1976 through August 31, 1978," Journal of Finance, American Finance Association, vol. 40(2), pages 455-480, June.
    7. Shuaiqiang Liu & Anastasia Borovykh & Lech A. Grzelak & Cornelis W. Oosterlee, 2019. "A neural network-based framework for financial model calibration," Papers 1904.10523, arXiv.org.
    8. Carr, Peter & Madan, Dilip B., 2005. "A note on sufficient conditions for no arbitrage," Finance Research Letters, Elsevier, vol. 2(3), pages 125-130, September.
    9. A Itkin, 2019. "Deep learning calibration of option pricing models: some pitfalls and solutions," Papers 1906.03507, arXiv.org.
    10. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    11. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    12. Graeme West, 2005. "Calibration of the SABR Model in Illiquid Markets," Applied Mathematical Finance, Taylor & Francis Journals, vol. 12(4), pages 371-385.
    13. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    2. Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2021. "Arbitrage-free neural-SDE market models," Papers 2105.11053, arXiv.org, revised Aug 2021.
    3. Andrew Na & Meixin Zhang & Justin Wan, 2023. "Computing Volatility Surfaces using Generative Adversarial Networks with Minimal Arbitrage Violations," Papers 2304.13128, arXiv.org, revised Dec 2023.
    4. Thomas Mazzoni, 2018. "Asymptotic Expansion of Risk-Neutral Pricing Density," IJFS, MDPI, vol. 6(1), pages 1-26, March.
    5. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    6. Chen, Gang & Roberts, Matthew C. & Roe, Brian E., 2005. "Forecasting Livestock Feed Cost Risks Using Futures and Options," 2005 Conference, April 18-19, 2005, St. Louis, Missouri 19048, NCR-134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk Management.
    7. David S. Bates, 1995. "Testing Option Pricing Models," NBER Working Papers 5129, National Bureau of Economic Research, Inc.
    8. Johannes Ruf & Weiguan Wang, 2019. "Neural networks for option pricing and hedging: a literature review," Papers 1911.05620, arXiv.org, revised May 2020.
    9. Pascal François & Rémi Galarneau‐Vincent & Geneviève Gauthier & Frédéric Godin, 2022. "Venturing into uncharted territory: An extensible implied volatility surface model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(10), pages 1912-1940, October.
    10. Hilliard, Jitka, 2013. "Testing Greeks and price changes in the S&P 500 options and futures contract: A regression analysis," International Review of Financial Analysis, Elsevier, vol. 26(C), pages 51-58.
    11. Cao, Yi & Liu, Xiaoquan & Zhai, Jia, 2021. "Option valuation under no-arbitrage constraints with neural networks," European Journal of Operational Research, Elsevier, vol. 293(1), pages 361-374.
    12. Chen, Gang & Roberts, Matthew C. & Roe, Brian E., 2005. "Managing Livestock Feed Cost Risks Using Futures and Options," 2005 Annual meeting, July 24-27, Providence, RI 19399, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    13. Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2020. "Detecting and repairing arbitrage in traded option prices," Papers 2008.09454, arXiv.org.
    14. Maciej Wysocki & Robert Ślepaczuk, 2020. "Artificial Neural Networks Performance in WIG20 Index Options Pricing," Working Papers 2020-19, Faculty of Economic Sciences, University of Warsaw.
    15. Bo Zhao & Stewart Hodges, 2013. "Parametric modeling of implied smile functions: a generalized SVI model," Review of Derivatives Research, Springer, vol. 16(1), pages 53-77, April.
    16. Jiang, George J. & Tian, Yisong S., 2010. "Misreaction or misspecification? A re-examination of volatility anomalies," Journal of Banking & Finance, Elsevier, vol. 34(10), pages 2358-2369, October.
    17. Carl Chiarella & Xue-Zhong He & Christina Sklibosios Nikitopoulos, 2015. "Derivative Security Pricing," Dynamic Modeling and Econometrics in Economics and Finance, Springer, edition 127, number 978-3-662-45906-5, July-Dece.
    18. Arindam Kundu & Sumit Kumar & Nutan Kumar Tomar, 2019. "Option Implied Risk-Neutral Density Estimation: A Robust and Flexible Method," Computational Economics, Springer;Society for Computational Economics, vol. 54(2), pages 705-728, August.
    19. Weilong Fu & Ali Hirsa, 2022. "Solving barrier options under stochastic volatility using deep learning," Papers 2207.00524, arXiv.org.
    20. Sobhesh Kumar Agarwalla & Sumit Saurav & Jayanth R. Varma, 2022. "Lottery and bubble stocks and the cross‐section of option‐implied tail risks," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(2), pages 231-249, February.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2310.16703. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.