IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2308.15048.html
   My bibliography  Save this paper

Optimal ratcheting of dividend payout under Brownian motion surplus

Author

Listed:
  • Chonghu Guan
  • Zuo Quan Xu

Abstract

This paper is concerned with a long standing optimal dividend payout problem in insurance subject to the so-called ratcheting constraint, that is, the dividend payout rate shall be non-decreasing over time. The surplus process is modeled by a drifted Brownian motion process and the aim is to find the optimal dividend ratcheting strategy to maximize the expectation of the total discounted dividend payouts until the ruin time. Due to the path-dependent constraint, the standard control theory cannot be directly applied to tackle the problem. The related Hamilton-Jacobi-Bellman (HJB) equation is a new type of variational inequality. In the literature, it is only shown to have a viscosity solution, which is not strong enough to guarantee the existence of an optimal dividend ratcheting strategy. This paper proposes a novel partial differential equation method to study the HJB equation. We not only prove the the existence and uniqueness of the solution in some stronger functional space, but also prove the monotonicity, boundedness, and $C^{\infty}$-smoothness of the dividend ratcheting free boundary. Based on these results, we eventually derive an optimal dividend ratcheting strategy, and thus solve the open problem completely. Economically, we find that if the surplus volatility is above an explicit threshold, then one should pay dividends at the maximum rate, regardless the surplus level. Otherwise, by contrast, the optimal dividend ratcheting strategy relays on the surplus level and one should only ratchet up the dividend payout rate when the surplus level touches the dividend ratcheting free boundary.

Suggested Citation

  • Chonghu Guan & Zuo Quan Xu, 2023. "Optimal ratcheting of dividend payout under Brownian motion surplus," Papers 2308.15048, arXiv.org.
  • Handle: RePEc:arx:papers:2308.15048
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2308.15048
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Xinfu & Landriault, David & Li, Bin & Li, Dongchen, 2015. "On minimizing drawdown risks of lifetime investments," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 46-54.
    2. Shuoqing Deng & Xun Li & Huyên Pham & Xiang Yu, 2022. "Optimal consumption with reference to past spending maximum," Finance and Stochastics, Springer, vol. 26(2), pages 217-266, April.
    3. Zhou Yang & Hyeng Keun Koo, 2018. "Optimal Consumption and Portfolio Selection with Early Retirement Option," Mathematics of Operations Research, INFORMS, vol. 43(4), pages 1378-1404, November.
    4. Romuald Elie & Nizar Touzi, 2008. "Optimal lifetime consumption and investment under a drawdown constraint," Finance and Stochastics, Springer, vol. 12(3), pages 299-330, July.
    5. Michael I. Taksar, 2000. "Optimal risk and dividend distribution control models for an insurance company," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 51(1), pages 1-42, February.
    6. Shuoqing Deng & Xun Li & Huyên Pham & Xiang Yu, 2022. "Optimal consumption with reference to past spending maximum," Post-Print hal-03947571, HAL.
    7. Benjamin Avanzi, 2009. "Strategies for Dividend Distribution: A Review," North American Actuarial Journal, Taylor & Francis Journals, vol. 13(2), pages 217-251.
    8. Philip H. Dybvig, 1995. "Dusenberry's Ratcheting of Consumption: Optimal Dynamic Consumption and Investment Given Intolerance for any Decline in Standard of Living," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 62(2), pages 287-313.
    9. Hansjoerg Albrecher & Nicole Bäuerle & Martin Bladt, 2018. "Dividends: From Refracting to Ratcheting," Swiss Finance Institute Research Paper Series 18-32, Swiss Finance Institute.
    10. Pablo Azcue & Nora Muler, 2005. "Optimal Reinsurance And Dividend Distribution Policies In The Cramér‐Lundberg Model," Mathematical Finance, Wiley Blackwell, vol. 15(2), pages 261-308, April.
    11. Asmussen, Soren & Taksar, Michael, 1997. "Controlled diffusion models for optimal dividend pay-out," Insurance: Mathematics and Economics, Elsevier, vol. 20(1), pages 1-15, June.
    12. Shuoqing Deng & Xun Li & Huyen Pham & Xiang Yu, 2020. "Optimal Consumption with Reference to Past Spending Maximum," Papers 2006.07223, arXiv.org, revised Mar 2022.
    13. T. Arun, 2012. "The Merton Problem with a Drawdown Constraint on Consumption," Papers 1210.5205, arXiv.org.
    14. Jeon, Junkee & Koo, Hyeng Keun & Shin, Yong Hyun, 2018. "Portfolio selection with consumption ratcheting," Journal of Economic Dynamics and Control, Elsevier, vol. 92(C), pages 153-182.
    15. Hans Gerber & Elias Shiu, 2006. "On Optimal Dividend Strategies In The Compound Poisson Model," North American Actuarial Journal, Taylor & Francis Journals, vol. 10(2), pages 76-93.
    16. Albrecher, Hansjörg & Bäuerle, Nicole & Bladt, Martin, 2018. "Dividends: From refracting to ratcheting," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 47-58.
    17. Linlin Tian & Lihua Bai & Junyi Guo, 2020. "Optimal Singular Dividend Problem Under the Sparre Andersen Model," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 603-626, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chonghu Guan & Jiacheng Fan & Zuo Quan Xu, 2023. "Optimal dividend payout with path-dependent drawdown constraint," Papers 2312.01668, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chonghu Guan & Jiacheng Fan & Zuo Quan Xu, 2023. "Optimal dividend payout with path-dependent drawdown constraint," Papers 2312.01668, arXiv.org.
    2. Hansjoerg Albrecher & Pablo Azcue & Nora Muler, 2020. "Optimal ratcheting of dividends in a Brownian risk model," Papers 2012.10632, arXiv.org.
    3. Hansjörg Albrecher & Pablo Azcue & Nora Muler, 2023. "Optimal dividends under a drawdown constraint and a curious square-root rule," Finance and Stochastics, Springer, vol. 27(2), pages 341-400, April.
    4. Hansjoerg Albrecher & Pablo Azcue & Nora Muler, 2022. "Optimal dividends under a drawdown constraint and a curious square-root rule," Papers 2206.12220, arXiv.org.
    5. Bahman Angoshtari & Erhan Bayraktar & Virginia R. Young, 2018. "Optimal Dividend Distribution Under Drawdown and Ratcheting Constraints on Dividend Rates," Papers 1806.07499, arXiv.org, revised Mar 2019.
    6. Bahman Angoshtari & Erhan Bayraktar & Virginia R. Young, 2021. "Optimal Investment and Consumption under a Habit-Formation Constraint," Papers 2102.03414, arXiv.org, revised Nov 2021.
    7. Hansjoerg Albrecher & Pablo Azcue & Nora Muler, 2019. "Optimal ratcheting of dividends in insurance," Papers 1910.06910, arXiv.org, revised Jun 2021.
    8. Zongxia Liang & Xiaodong Luo & Fengyi Yuan, 2023. "Consumption-investment decisions with endogenous reference point and drawdown constraint," Mathematics and Financial Economics, Springer, volume 17, number 6, June.
    9. Li, Xun & Yu, Xiang & Zhang, Qinyi, 2023. "Optimal consumption and life insurance under shortfall aversion and a drawdown constraint," Insurance: Mathematics and Economics, Elsevier, vol. 108(C), pages 25-45.
    10. Ying Shen & Chuancun Yin & Kam Chuen Yuen, 2011. "Alternative approach to the optimality of the threshold strategy for spectrally negative Levy processes," Papers 1101.0446, arXiv.org, revised Feb 2014.
    11. Thonhauser, Stefan & Albrecher, Hansjorg, 2007. "Dividend maximization under consideration of the time value of ruin," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 163-184, July.
    12. Albrecher, Hansjörg & Bäuerle, Nicole & Bladt, Martin, 2018. "Dividends: From refracting to ratcheting," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 47-58.
    13. Guan, Huiqi & Liang, Zongxia, 2014. "Viscosity solution and impulse control of the diffusion model with reinsurance and fixed transaction costs," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 109-122.
    14. Yin, Chuancun & Yuen, Kam Chuen, 2011. "Optimality of the threshold dividend strategy for the compound Poisson model," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1841-1846.
    15. Liang, Zhibin & Young, Virginia R., 2012. "Dividends and reinsurance under a penalty for ruin," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 437-445.
    16. Julia Eisenberg & Paul Kruhner, 2018. "Suboptimal Control of Dividends under Exponential Utility," Papers 1809.01983, arXiv.org, revised Jan 2019.
    17. Julia Eisenberg & Stefan Kremsner & Alexander Steinicke, 2021. "Two Approaches for a Dividend Maximization Problem under an Ornstein-Uhlenbeck Interest Rate," Papers 2108.00234, arXiv.org.
    18. Xu, Ran & Woo, Jae-Kyung, 2020. "Optimal dividend and capital injection strategy with a penalty payment at ruin: Restricted dividend payments," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 1-16.
    19. Zhou, Zhou & Jin, Zhuo, 2020. "Optimal equilibrium barrier strategies for time-inconsistent dividend problems in discrete time," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 100-108.
    20. Yongwu Li & Zhongfei Li & Yan Zeng, 2016. "Equilibrium Dividend Strategy with Non-exponential Discounting in a Dual Model," Journal of Optimization Theory and Applications, Springer, vol. 168(2), pages 699-722, February.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2308.15048. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.