IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2305.00887.html
   My bibliography  Save this paper

Disturbance Effects on Financial Timberland Returns in Austria

Author

Listed:
  • Petri P. Karenlampi

Abstract

Probability theory is applied for the effect of severe disturbances on the return rate on capital within multiannual stands growing crops. Two management regimes are discussed, rotations of even-aged plants on the one hand, and uneven-aged semi-stationary state on the other. The effect of any disturbance appears two-fold, contributing to both earnings and capitalization. Results are illustrated using data from a recently published study, regarding spruce (Picea abies) forests in Austria. The economic results differ from those of the paper where the data is presented, here indicating continuous-cover forestry is financially inferior to rotation forestry. Any severe disturbance may induce a regime shift from continuous-cover to even-aged forestry. If such a regime shift is not accepted, the disturbance losses reduce profits but do not affect capitalization, making continuous-cover forestry financially more sensitive to disturbances. Revenue from carbon rent favors the management regime with higher carbon stock. The methods introduced in this paper can be applied to any dataset, regardless of location and tree species.

Suggested Citation

  • Petri P. Karenlampi, 2023. "Disturbance Effects on Financial Timberland Returns in Austria," Papers 2305.00887, arXiv.org.
  • Handle: RePEc:arx:papers:2305.00887
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2305.00887
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rupert Seidl & Mart-Jan Schelhaas & Werner Rammer & Pieter Johannes Verkerk, 2014. "Increasing forest disturbances in Europe and their impact on carbon storage," Nature Climate Change, Nature, vol. 4(9), pages 806-810, September.
    2. Yong Luo & Han Y. H. Chen, 2013. "Observations from old forests underestimate climate change effects on tree mortality," Nature Communications, Nature, vol. 4(1), pages 1-6, June.
    3. Rupert Seidl & Mart-Jan Schelhaas & Werner Rammer & Pieter Johannes Verkerk, 2014. "Correction: Corrigendum: Increasing forest disturbances in Europe and their impact on carbon storage," Nature Climate Change, Nature, vol. 4(10), pages 930-930, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali Jahani & Maryam Saffariha, 2022. "Tree failure prediction model (TFPM): machine learning techniques comparison in failure hazard assessment of Platanus orientalis in urban forestry," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 881-898, January.
    2. Patrice Loisel & Marielle Brunette & Stéphane Couture, 2022. "Ambiguity, value of information and forest rotation decision under storm risk," Working Papers of BETA 2022-26, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    3. Thomas, J. & Brunette, M. & Leblois, A., 2022. "The determinants of adapting forest management practices to climate change: Lessons from a survey of French private forest owners," Forest Policy and Economics, Elsevier, vol. 135(C).
    4. Ping, Jiaye & Zhou, Jian & Huang, Kun & Sun, Xiaoying & Sun, Huanfa & Xia, Jianyang, 2021. "Modeling the typhoon disturbance effect on ecosystem carbon storage dynamics in a subtropical forest of China's coastal region," Ecological Modelling, Elsevier, vol. 455(C).
    5. Raymundo Marcos-Martinez & José J. Sánchez & Lorie Srivastava & Natthanij Soonsawad & Dominique Bachelet, 2022. "Valuing the Impact of Forest Disturbances on the Climate Regulation Service of Western U.S. Forests," Sustainability, MDPI, vol. 14(2), pages 1-12, January.
    6. Juutinen, Artti & Haeler, Elena & Jandl, Robert & Kuhlmey, Katharina & Kurttila, Mikko & Mäkipää, Raisa & Pohjanmies, Tähti & Rosenkranz, Lydia & Skudnik, Mitja & Triplat, Matevž & Tolvanen, Anne & Vi, 2022. "Common preferences of European small-scale forest owners towards contract-based management," Forest Policy and Economics, Elsevier, vol. 144(C).
    7. Giovanni B. Concu & Claudio Detotto & Marco Vannini, 2021. "Drivers of intentions and drivers of actions: willingness toparticipate versus actual participation in fire management inSardinia, Italy," Working Papers 018, Laboratoire Lieux, Identités, eSpaces et Activités (LISA).
    8. Julie Thomas & Marielle Brunette & Antoine Leblois, 2021. "Adapting forest management practices to climate change : Lessons from a survey of French private forest owners," Working Papers hal-03142772, HAL.
    9. Jarisch, Isabelle & Bödeker, Kai & Bingham, Logan Robert & Friedrich, Stefan & Kindu, Mengistie & Knoke, Thomas, 2022. "The influence of discounting ecosystem services in robust multi-objective optimization – An application to a forestry-avocado land-use portfolio," Forest Policy and Economics, Elsevier, vol. 141(C).
    10. Andrey N. Shikhov & Ekaterina S. Perminova & Sergey I. Perminov, 2019. "Satellite-based analysis of the spatial patterns of fire- and storm-related forest disturbances in the Ural region, Russia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(1), pages 283-308, May.
    11. Gianfranco Fabbio & Paolo Cantiani & Fabrizio Ferretti & Umberto Di Salvatore & Giada Bertini & Claudia Becagli & Ugo Chiavetta & Maurizio Marchi & Luca Salvati, 2018. "Sustainable Land Management, Adaptive Silviculture, and New Forest Challenges: Evidence from a Latitudinal Gradient in Italy," Sustainability, MDPI, vol. 10(7), pages 1-14, July.
    12. Lars Högbom & Dalia Abbas & Kęstutis Armolaitis & Endijs Baders & Martyn Futter & Aris Jansons & Kalev Jõgiste & Andis Lazdins & Diana Lukminė & Mika Mustonen & Knut Øistad & Anneli Poska & Pasi Rauti, 2021. "Trilemma of Nordic–Baltic Forestry—How to Implement UN Sustainable Development Goals," Sustainability, MDPI, vol. 13(10), pages 1-12, May.
    13. Tie Zhang & Guijie Ding & Jiangping Zhang & Yujiao Qi, 2022. "Contributions of Biotic and Abiotic Factors to the Spatial Heterogeneity of Aboveground Biomass in Subtropical Forests: A Case Study of Guizhou Province," Sustainability, MDPI, vol. 14(17), pages 1-15, August.
    14. Luca Nonini & Marco Fiala, 2022. "Assessment of Forest Wood and Carbon Stock at the Stand Level: First Results of a Modeling Approach for an Italian Case Study Area of the Central Alps," Sustainability, MDPI, vol. 14(7), pages 1-24, March.
    15. Sampo Soimakallio & Tuomo Kalliokoski & Aleksi Lehtonen & Olli Salminen, 2021. "On the trade-offs and synergies between forest carbon sequestration and substitution," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 26(1), pages 1-17, January.
    16. Honkaniemi, Juha & Ojansuu, Risto & Kasanen, Risto & Heliövaara, Kari, 2018. "Interaction of disturbance agents on Norway spruce: A mechanistic model of bark beetle dynamics integrated in simulation framework WINDROT," Ecological Modelling, Elsevier, vol. 388(C), pages 45-60.
    17. Lee, Christine & Schlemme, Claire & Murray, Jessica & Unsworth, Robert, 2015. "The cost of climate change: Ecosystem services and wildland fires," Ecological Economics, Elsevier, vol. 116(C), pages 261-269.
    18. Marielle Brunette & Marc Hanewinkel, 2021. "Assurance financière et assurance naturelle : une application à la forêt," Working Papers of BETA 2021-28, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    19. Louise Eriksson, 2017. "The importance of threat, strategy, and resource appraisals for long-term proactive risk management among forest owners in Sweden," Journal of Risk Research, Taylor & Francis Journals, vol. 20(7), pages 868-886, July.
    20. Knoke, Thomas & Gosling, Elizabeth & Thom, Dominik & Chreptun, Claudia & Rammig, Anja & Seidl, Rupert, 2021. "Economic losses from natural disturbances in Norway spruce forests – A quantification using Monte-Carlo simulations," Ecological Economics, Elsevier, vol. 185(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2305.00887. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.