IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2202.03198.html
   My bibliography  Save this paper

Financial Crisis in the Framework of Non-zero Temperature Balance Theory

Author

Listed:
  • MohammadReza Zahedian
  • Mahsa Bagherikalhor
  • Andrey Trufanov
  • G. Reza Jafari

Abstract

Financial crises are known as crashes that result in a sudden loss of value of financial assets in large part and they continue to occur from time to time surprisingly. In order to discover features of the financial network, the pairwise interaction of stocks has been considered in many research, but the existence of the strong correlation of stocks and their collective behavior in crisis made us address higher-order interactions. Hence, in this study, we investigate financial networks by triplet interaction in the framework of balance theory. Due to detecting the contribution of higher-order interactions in understanding the complex behavior of stocks we take the advantage of the orders parameters of the higher-order interactions. Looking at real data of financial market obtained from $S\&P500$ through the lens of balance theory for the quest of network structure in different periods of time near and far from crisis reveals the existence of a structural difference of the network that corresponds to different periods of time. Here, we address two well-known crises the Great regression (2008) and the Covid-19 recession (2020). Results show an ordered structure forms on-crisis in the financial network while stocks behave independently far from a crisis. The formation of the ordered structure of stocks in crisis makes the network resistant against disorder. The resistance of the ordered structure against applying a disorder (temperature) can measure the crisis strength and determine the temperature at which the network transits. There is a critical temperature, $T_{c}$, in the language of statistical mechanics and mean-field approach which above, the ordered structure destroys abruptly and a first-order phase transition occurs. The stronger the crisis, the higher the critical temperature.

Suggested Citation

  • MohammadReza Zahedian & Mahsa Bagherikalhor & Andrey Trufanov & G. Reza Jafari, 2022. "Financial Crisis in the Framework of Non-zero Temperature Balance Theory," Papers 2202.03198, arXiv.org.
  • Handle: RePEc:arx:papers:2202.03198
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2202.03198
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kindleberger, Charles P., 1987. "The Great Depression: An Inquiry into the Cause, Course and Consequences of the Worldwide Depression of the Nineteen-Thirties, as Seen by Contemporaries and in the Light of History. By John A. Garraty," The Journal of Economic History, Cambridge University Press, vol. 47(3), pages 855-856, September.
    2. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    3. Elad Schneidman & Michael J. Berry & Ronen Segev & William Bialek, 2006. "Weak pairwise correlations imply strongly correlated network states in a neural population," Nature, Nature, vol. 440(7087), pages 1007-1012, April.
    4. Bahrami, Mohammad & Chinichian, Narges & Hosseiny, Ali & Jafari, Gholamreza & Ausloos, Marcel, 2020. "Optimization of the post-crisis recovery plans in scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    5. David C. Wheelock, 2020. "Comparing the COVID-19 Recession with the Great Depression," Economic Synopses, Federal Reserve Bank of St. Louis, issue 39, August.
    6. Namaki, A. & Shirazi, A.H. & Raei, R. & Jafari, G.R., 2011. "Network analysis of a financial market based on genuine correlation and threshold method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3835-3841.
    7. Andres M Belaza & Kevin Hoefman & Jan Ryckebusch & Aaron Bramson & Milan van den Heuvel & Koen Schoors, 2017. "Statistical physics of balance theory," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-19, August.
    8. Namaki, A. & Koohi Lai, Z. & Jafari, G.R. & Raei, R. & Tehrani, R., 2013. "Comparing emerging and mature markets during times of crises: A non-extensive statistical approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(14), pages 3039-3044.
    9. Lim, Gyuchang & Kim, SooYong & Kim, Junghwan & Kim, Pyungsoo & Kang, Yoonjong & Park, Sanghoon & Park, Inho & Park, Sang-Bum & Kim, Kyungsik, 2009. "Structure of a financial cross-correlation matrix under attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(18), pages 3851-3858.
    10. Manavi, Seyed Alireza & Jafari, Gholamreza & Rouhani, Shahin & Ausloos, Marcel, 2020. "Demythifying the belief in cryptocurrencies decentralized aspects. A study of cryptocurrencies time cross-correlations with common currencies, commodities and financial indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jamshid Ardalankia & Jafar Askari & Somaye Sheykhali & Emmanuel Haven & G. Reza Jafari, 2020. "Mapping Coupled Time-series Onto Complex Network," Papers 2004.13536, arXiv.org, revised Aug 2020.
    2. Hosseini, Seyed Soheil & Wormald, Nick & Tian, Tianhai, 2021. "A Weight-based Information Filtration Algorithm for Stock-correlation Networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    3. Nobi, Ashadun & Maeng, Seong Eun & Ha, Gyeong Gyun & Lee, Jae Woo, 2014. "Effects of global financial crisis on network structure in a local stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 135-143.
    4. Chen, Wei & Hou, Xiaoli & Jiang, Manrui & Jiang, Cheng, 2022. "Identifying systemically important financial institutions in complex network: A case study of Chinese stock market," Emerging Markets Review, Elsevier, vol. 50(C).
    5. Zhu, Jia & Wei, Daijun, 2021. "Analysis of stock market based on visibility graph and structure entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 576(C).
    6. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    7. Busu, Cristian & Busu, Mihail, 2019. "Modeling the predictive power of the singular value decomposition-based entropy. Empirical evidence from the Dow Jones Global Titans 50 Index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    8. Sayantan Banerjee & Kousik Guhathakurta, 2019. "Change-point Analysis in Financial Networks," Papers 1911.05952, arXiv.org.
    9. Huang, Wei-Qiang & Zhuang, Xin-Tian & Yao, Shuang & Uryasev, Stan, 2016. "A financial network perspective of financial institutions’ systemic risk contributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 183-196.
    10. Nie, Chun-Xiao, 2017. "Correlation dimension of financial market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 632-639.
    11. Valle, Mauricio A. & Ruz, Gonzalo A. & Rica, Sergio, 2019. "Market basket analysis by solving the inverse Ising problem: Discovering pairwise interaction strengths among products," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 36-44.
    12. Mbatha, Vusisizwe Moses & Alovokpinhou, Sedjro Aaron, 2022. "The structure of the South African stock market network during COVID-19 hard lockdown," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).
    13. Bury, Thomas, 2013. "Market structure explained by pairwise interactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1375-1385.
    14. Seyed Soheil Hosseini & Nick Wormald & Tianhai Tian, 2019. "A Weight-based Information Filtration Algorithm for Stock-Correlation Networks," Papers 1904.06007, arXiv.org.
    15. Tristan Millington & Mahesan Niranjan, 2020. "Construction of Minimum Spanning Trees from Financial Returns using Rank Correlation," Papers 2005.03963, arXiv.org, revised Nov 2020.
    16. He, Chengying & Wen, Zhang & Huang, Ke & Ji, Xiaoqin, 2022. "Sudden shock and stock market network structure characteristics: A comparison of past crisis events," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    17. Zhang, Weiping & Zhuang, Xintian, 2019. "The stability of Chinese stock network and its mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 748-761.
    18. Bentian Li & Dechang Pi, 2018. "Analysis of global stock index data during crisis period via complex network approach," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-16, July.
    19. Biplab Bhattacharjee & Muhammad Shafi & Animesh Acharjee, 2017. "Investigating the Evolution of Linkage Dynamics among Equity Markets Using Network Models and Measures: The Case of Asian Equity Market Integration," Data, MDPI, vol. 2(4), pages 1-28, December.
    20. Nie, Chun-Xiao & Song, Fu-Tie, 2019. "Global Rényi index of the distance matrix," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 902-915.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2202.03198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.