IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2112.09816.html
   My bibliography  Save this paper

Potential utilization of Battery Energy Storage Systems (BESS) in the major European electricity markets

Author

Listed:
  • Yu Hu
  • Miguel Armada
  • Maria Jesus Sanchez

Abstract

Given the declining cost of battery technology in the last decade, nowadays BESS becomes a more attractive solution in electrical power systems. The objective of this work is to analyze the potential utilization of BESS in the major European electricity markets. A general payoff model for BESS operation is proposed to correctly address the operational flexibility of battery systems. Utilization factors such as potentially profitable utilization time and rate are calculated for common applications including energy arbitrage and frequency support services using real market information. The result shows that under the current empirical estimation of the battery cost and lifetime, BESS is not feasible for energy arbitrage in most of the European electricity markets. However, BESS shows clearly and significantly higher potential in providing frequency support services. The result suggests that, when the frequency containment reserve is remunerable, the potentially profitable utilization of BESS has become already accretive in most of the European countries. For example from January to September 2021, the potentially profitable utilization rate has reached almost 100% for the FCR-N service in the Danish market. Comparing the regional electricity markets in Europe, BESS has shown significant potential in becoming a feasible solution in Central Western Europe and parts of Northern Europe by providing frequency regulation services. Meanwhile, in the British Isles and some other islanded local markets, a remarkable level of scarcity of flexibility has been revealed by the investigation, and the potential of BESS would also be considerably encouraging.

Suggested Citation

  • Yu Hu & Miguel Armada & Maria Jesus Sanchez, 2021. "Potential utilization of Battery Energy Storage Systems (BESS) in the major European electricity markets," Papers 2112.09816, arXiv.org, revised Jun 2022.
  • Handle: RePEc:arx:papers:2112.09816
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2112.09816
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dirk Lauinger & Franc{c}ois Vuille & Daniel Kuhn, 2023. "Frequency Regulation with Storage: On Losses and Profits," Papers 2306.02987, arXiv.org, revised Mar 2024.
    2. Angel L. Cedeño & Reinier López Ahuar & José Rojas & Gonzalo Carvajal & César Silva & Juan C. Agüero, 2022. "Model Predictive Control for Photovoltaic Plants with Non-Ideal Energy Storage Using Mixed Integer Linear Programming," Energies, MDPI, vol. 15(17), pages 1-21, September.
    3. Pablo Carrasco Ortega & Pablo Durán Gómez & Julio César Mérida Sánchez & Fernando Echevarría Camarero & Ángel Á. Pardiñas, 2023. "Battery Energy Storage Systems for the New Electricity Market Landscape: Modeling, State Diagnostics, Management, and Viability—A Review," Energies, MDPI, vol. 16(17), pages 1-51, August.
    4. Md. Shafiul Alam & Tanzi Ahmed Chowdhury & Abhishak Dhar & Fahad Saleh Al-Ismail & M. S. H. Choudhury & Md Shafiullah & Md. Ismail Hossain & Md. Alamgir Hossain & Aasim Ullah & Syed Masiur Rahman, 2023. "Solar and Wind Energy Integrated System Frequency Control: A Critical Review on Recent Developments," Energies, MDPI, vol. 16(2), pages 1-31, January.
    5. Hui Zhou & Jian Ding & Yinlong Hu & Zisong Ye & Shang Shi & Yonghui Sun & Qiyu Zhang, 2022. "Economic Dispatch of Power Retailers: A Bi-Level Programming Approach via Market Clearing Price," Energies, MDPI, vol. 15(19), pages 1-17, September.
    6. Sai, Wei & Pan, Zehua & Liu, Siyu & Jiao, Zhenjun & Zhong, Zheng & Miao, Bin & Chan, Siew Hwa, 2023. "Event-driven forecasting of wholesale electricity price and frequency regulation price using machine learning algorithms," Applied Energy, Elsevier, vol. 352(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2112.09816. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.