IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2105.07524.html
   My bibliography  Save this paper

Optimal Reinsurance and Investment under Common Shock Dependence Between Financial and Actuarial Markets

Author

Listed:
  • Claudia Ceci
  • Katia Colaneri
  • Alessandra Cretarola

Abstract

We study optimal proportional reinsurance and investment strategies for an insurance company which experiences both ordinary and catastrophic claims and wishes to maximize the expected exponential utility of its terminal wealth. We propose a model where the insurance framework is affected by environmental factors, and aggregate claims and stock prices are subject to common shocks, i.e. drastic events such as earthquakes, extreme weather conditions, or even pandemics, that have an immediate impact on the financial market and simultaneously induce insurance claims. Using the classical stochastic control approach based on the Hamilton-Jacobi-Bellman equation, we provide a verification result for the value function via classical solutions to two backward partial differential equations and characterize the optimal reinsurance and investment strategies. Finally, we make a comparison analysis to discuss the effect of common shock dependence.

Suggested Citation

  • Claudia Ceci & Katia Colaneri & Alessandra Cretarola, 2021. "Optimal Reinsurance and Investment under Common Shock Dependence Between Financial and Actuarial Markets," Papers 2105.07524, arXiv.org.
  • Handle: RePEc:arx:papers:2105.07524
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2105.07524
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Matteo Brachetta & Claudia Ceci, 2019. "A BSDE-based approach for the optimal reinsurance problem under partial information," Papers 1910.05999, arXiv.org, revised May 2020.
    2. Cao, Jingyi & Landriault, David & Li, Bin, 2020. "Optimal reinsurance-investment strategy for a dynamic contagion claim model," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 206-215.
    3. Shen, Yang & Zeng, Yan, 2015. "Optimal investment–reinsurance strategy for mean–variance insurers with square-root factor process," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 118-137.
    4. Hainaut, Donatien, 2017. "Contagion modeling between the financial and insurance markets with time changed processes," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 63-77.
    5. Thorsten Schmidt, 2014. "Catastrophe Insurance Modeled by Shot-Noise Processes," Risks, MDPI, vol. 2(1), pages 1-22, February.
    6. Hainaut, Donatien, 2017. "Contagion modeling between the financial and insurance markets with time changed processes," LIDAM Reprints ISBA 2017016, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Patricia Born & W. Viscusi, 2006. "The catastrophic effects of natural disasters on insurance markets," Journal of Risk and Uncertainty, Springer, vol. 33(1), pages 55-72, September.
    8. Yuping Liu & Jin Ma, 2009. "Optimal reinsurance/investment problems for general insurance models," Papers 0908.4538, arXiv.org.
    9. Yuen, Kam Chuen & Liang, Zhibin & Zhou, Ming, 2015. "Optimal proportional reinsurance with common shock dependence," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 1-13.
    10. Bi, Junna & Liang, Zhibin & Xu, Fangjun, 2016. "Optimal mean–variance investment and reinsurance problems for the risk model with common shock dependence," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 245-258.
    11. Zhibin Liang & Junna Bi & Kam Chuen Yuen & Caibin Zhang, 2016. "Optimal mean–variance reinsurance and investment in a jump-diffusion financial market with common shock dependence," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 84(1), pages 155-181, August.
    12. Gu, Ailing & Viens, Frederi G. & Yi, Bo, 2017. "Optimal reinsurance and investment strategies for insurers with mispricing and model ambiguity," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 235-249.
    13. Matteo Brachetta & Hanspeter Schmidli, 2020. "Optimal reinsurance and investment in a diffusion model," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(1), pages 341-361, June.
    14. Irgens, Christian & Paulsen, Jostein, 2004. "Optimal control of risk exposure, reinsurance and investments for insurance portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 35(1), pages 21-51, August.
    15. Brachetta, M. & Ceci, C., 2020. "A BSDE-based approach for the optimal reinsurance problem under partial information," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 1-16.
    16. Junna Bi & Zhibin Liang & Kam Chuen Yuen, 2019. "Optimal mean–variance investment/reinsurance with common shock in a regime-switching market," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 90(1), pages 109-135, August.
    17. Liang, Zhibin & Bayraktar, Erhan, 2014. "Optimal reinsurance and investment with unobservable claim size and intensity," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 156-166.
    18. Brachetta, M. & Ceci, C., 2019. "Optimal proportional reinsurance and investment for stochastic factor models," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 15-33.
    19. Han, Xia & Liang, Zhibin & Zhang, Caibin, 2019. "Optimal proportional reinsurance with common shock dependence to minimise the probability of drawdown," Annals of Actuarial Science, Cambridge University Press, vol. 13(2), pages 268-294, September.
    20. Matteo Brachetta & Claudia Ceci, 2019. "Optimal excess-of-loss reinsurance for stochastic factor risk models," Papers 1904.05422, arXiv.org.
    21. Matteo Brachetta & Claudia Ceci, 2019. "Optimal Excess-of-Loss Reinsurance for Stochastic Factor Risk Models," Risks, MDPI, vol. 7(2), pages 1-23, May.
    22. Andreas Richter & Thomas C. Wilson, 2020. "Covid-19: implications for insurer risk management and the insurability of pandemic risk," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 45(2), pages 171-199, September.
    23. Dassios, Angelos & Jang, Jiwook, 2003. "Pricing of catastrophe reinsurance and derivatives using the Cox process with shot noise intensity," LSE Research Online Documents on Economics 2849, London School of Economics and Political Science, LSE Library.
    24. Benali, Nadia & Feki, Rochdi, 2017. "The impact of natural disasters on insurers’ profitability: Evidence from Property/Casualty Insurance company in United States," Research in International Business and Finance, Elsevier, vol. 42(C), pages 1394-1400.
    25. Colaneri, Katia & Frey, Rüdiger, 2021. "Classical solutions of the backward PIDE for Markov modulated marked point processes and applications to CAT bonds," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 498-507.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Katia Colaneri & Alessandra Cretarola & Benedetta Salterini, 2021. "Optimal Investment and Proportional Reinsurance in a Regime-Switching Market Model under Forward Preferences," Mathematics, MDPI, vol. 9(14), pages 1-27, July.
    2. Katia Colaneri & Alessandra Cretarola & Benedetta Salterini, 2021. "Optimal investment and proportional reinsurance in a regime-switching market model under forward preferences," Papers 2106.13888, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brachetta, M. & Ceci, C., 2020. "A BSDE-based approach for the optimal reinsurance problem under partial information," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 1-16.
    2. Matteo Brachetta & Hanspeter Schmidli, 2020. "Optimal reinsurance and investment in a diffusion model," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(1), pages 341-361, June.
    3. Sarah Bensalem & Nicolás Hernández-Santibáñez & Nabil Kazi-Tani, 2023. "A continuous-time model of self-protection," Finance and Stochastics, Springer, vol. 27(2), pages 503-537, April.
    4. Guan, Guohui & Hu, Xiang, 2022. "Equilibrium mean–variance reinsurance and investment strategies for a general insurance company under smooth ambiguity," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
    5. Yingxu Tian & Zhongyang Sun & Junyi Guo, 2022. "Optimal Mean-Variance Investment-Reinsurance Strategy for a Dependent Risk Model with Ornstein-Uhlenbeck Process," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 1169-1191, June.
    6. Matteo Brachetta & Claudia Ceci, 2019. "A BSDE-based approach for the optimal reinsurance problem under partial information," Papers 1910.05999, arXiv.org, revised May 2020.
    7. Katia Colaneri & Alessandra Cretarola & Benedetta Salterini, 2021. "Optimal investment and proportional reinsurance in a regime-switching market model under forward preferences," Papers 2106.13888, arXiv.org.
    8. Yan Zhang & Peibiao Zhao & Rufei Ma, 2022. "Robust Optimal Excess-of-Loss Reinsurance and Investment Problem with more General Dependent Claim Risks and Defaultable Risk," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2743-2777, December.
    9. Caibin Zhang & Zhibin Liang & Kam Chuen Yuen, 2019. "Optimal dynamic reinsurance with common shock dependence and state-dependent risk aversion," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 1-45, March.
    10. Nicole Bauerle & Gregor Leimcke, 2021. "Bayesian optimal investment and reinsurance with dependent financial and insurance risks," Papers 2103.05777, arXiv.org.
    11. Brachetta, M. & Ceci, C., 2019. "Optimal proportional reinsurance and investment for stochastic factor models," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 15-33.
    12. Matteo Brachetta & Claudia Ceci, 2019. "Optimal excess-of-loss reinsurance for stochastic factor risk models," Papers 1904.05422, arXiv.org.
    13. Matteo Brachetta & Claudia Ceci, 2018. "Optimal proportional reinsurance and investment for stochastic factor models," Papers 1806.01223, arXiv.org.
    14. Katia Colaneri & Alessandra Cretarola & Benedetta Salterini, 2021. "Optimal Investment and Proportional Reinsurance in a Regime-Switching Market Model under Forward Preferences," Mathematics, MDPI, vol. 9(14), pages 1-27, July.
    15. Liu, Guo & Jin, Zhuo & Li, Shuanming & Zhang, Jiannan, 2022. "Stochastic asset allocation and reinsurance game under contagious claims," Finance Research Letters, Elsevier, vol. 49(C).
    16. Matteo Brachetta & Claudia Ceci, 2021. "Optimal Reinsurance Problem under Fixed Cost and Exponential Preferences," Mathematics, MDPI, vol. 9(4), pages 1-20, February.
    17. Nicole Bauerle & Gregor Leimcke, 2020. "Robust Optimal Investment and Reinsurance Problems with Learning," Papers 2001.11301, arXiv.org.
    18. Yingxu Tian & Zhongyang Sun, 2018. "Mean-Variance Portfolio Selection in a Jump-Diffusion Financial Market with Common Shock Dependence," JRFM, MDPI, vol. 11(2), pages 1-12, May.
    19. Junna Bi & Jun Cai & Yan Zeng, 2021. "Equilibrium reinsurance-investment strategies with partial information and common shock dependence," Annals of Operations Research, Springer, vol. 307(1), pages 1-24, December.
    20. Danping Li & Dongchen Li & Virginia R. Young, 2017. "Optimality of Excess-Loss Reinsurance under a Mean-Variance Criterion," Papers 1703.01984, arXiv.org, revised Mar 2017.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2105.07524. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.