IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2103.00905.html
   My bibliography  Save this paper

Set-Valued Dynamic Risk Measures for Processes and Vectors

Author

Listed:
  • Yanhong Chen
  • Zachary Feinstein

Abstract

The relationship between set-valued risk measures for processes and vectors on the optional filtration is investigated. The equivalence of risk measures for processes and vectors and the equivalence of their penalty function formulations are provided. In contrast with scalar risk measures, this equivalence requires an augmentation of the set-valued risk measures for processes. We utilize this result to deduce a new dual representation for risk measures for processes in the set-valued framework. Finally, the equivalence of multiportfolio time consistency between set-valued risk measures for processes and vectors is provided; to accomplish this, an augmented definition for multiportfolio time consistency of set-valued risk measures for processes is proposed.

Suggested Citation

  • Yanhong Chen & Zachary Feinstein, 2021. "Set-Valued Dynamic Risk Measures for Processes and Vectors," Papers 2103.00905, arXiv.org, revised Nov 2021.
  • Handle: RePEc:arx:papers:2103.00905
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2103.00905
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marco Frittelli & Giacomo Scandolo, 2006. "Risk Measures And Capital Requirements For Processes," Mathematical Finance, Wiley Blackwell, vol. 16(4), pages 589-612, October.
    2. Riedel, Frank, 2004. "Dynamic coherent risk measures," Stochastic Processes and their Applications, Elsevier, vol. 112(2), pages 185-200, August.
    3. Feinstein Zachary & Rudloff Birgit, 2021. "Time consistency for scalar multivariate risk measures," Statistics & Risk Modeling, De Gruyter, vol. 38(3-4), pages 71-90, July.
    4. Frittelli, Marco & Rosazza Gianin, Emanuela, 2002. "Putting order in risk measures," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1473-1486, July.
    5. Zachary Feinstein & Birgit Rudloff, 2013. "Time consistency of dynamic risk measures in markets with transaction costs," Quantitative Finance, Taylor & Francis Journals, vol. 13(9), pages 1473-1489, September.
    6. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    7. repec:dau:papers:123456789/353 is not listed on IDEAS
    8. Zachary Feinstein & Birgit Rudloff, 2015. "A Supermartingale Relation for Multivariate Risk Measures," Papers 1510.05561, arXiv.org, revised Jan 2018.
    9. Patrick Cheridito & Freddy Delbaen & Michael Kupper, 2005. "Coherent and convex monetary risk measures for unbounded càdlàg processes," Finance and Stochastics, Springer, vol. 9(3), pages 369-387, July.
    10. Zachary Feinstein & Birgit Rudloff, 2018. "A supermartingale relation for multivariate risk measures," Quantitative Finance, Taylor & Francis Journals, vol. 18(12), pages 1971-1990, December.
    11. Zachary Feinstein & Birgit Rudloff, 2018. "Time consistency for scalar multivariate risk measures," Papers 1810.04978, arXiv.org, revised Nov 2021.
    12. Yanhong Chen & Yijun Hu, 2020. "Set-Valued Dynamic Risk Measures For Bounded Discrete-Time Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 23(03), pages 1-42, May.
    13. Elyés Jouini & Moncef Meddeb & Nizar Touzi, 2004. "Vector-valued coherent risk measures," Finance and Stochastics, Springer, vol. 8(4), pages 531-552, November.
    14. Zachary Feinstein & Birgit Rudloff, 2015. "Multi-portfolio time consistency for set-valued convex and coherent risk measures," Finance and Stochastics, Springer, vol. 19(1), pages 67-107, January.
    15. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    16. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath & Hyejin Ku, 2007. "Coherent multiperiod risk adjusted values and Bellman’s principle," Annals of Operations Research, Springer, vol. 152(1), pages 5-22, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanhong Chen & Zachary Feinstein, 2022. "Set-valued dynamic risk measures for processes and for vectors," Finance and Stochastics, Springer, vol. 26(3), pages 505-533, July.
    2. Zachary Feinstein & Birgit Rudloff, 2018. "Scalar multivariate risk measures with a single eligible asset," Papers 1807.10694, arXiv.org, revised Feb 2021.
    3. Zachary Feinstein & Birgit Rudloff, 2018. "Time consistency for scalar multivariate risk measures," Papers 1810.04978, arXiv.org, revised Nov 2021.
    4. c{C}au{g}{i}n Ararat & Zachary Feinstein, 2019. "Set-Valued Risk Measures as Backward Stochastic Difference Inclusions and Equations," Papers 1912.06916, arXiv.org, revised Sep 2020.
    5. Çağın Ararat & Zachary Feinstein, 2021. "Set-valued risk measures as backward stochastic difference inclusions and equations," Finance and Stochastics, Springer, vol. 25(1), pages 43-76, January.
    6. Acciaio, Beatrice & Föllmer, Hans & Penner, Irina, 2012. "Risk assessment for uncertain cash flows: model ambiguity, discounting ambiguity, and the role of bubbles," LSE Research Online Documents on Economics 50118, London School of Economics and Political Science, LSE Library.
    7. Bingchu Nie & Dejian Tian & Long Jiang, 2024. "Set-valued Star-Shaped Risk Measures," Papers 2402.18014, arXiv.org.
    8. Zachary Feinstein & Birgit Rudloff, 2015. "A Supermartingale Relation for Multivariate Risk Measures," Papers 1510.05561, arXiv.org, revised Jan 2018.
    9. Alessandro Doldi & Marco Frittelli, 2021. "Real-Valued Systemic Risk Measures," Mathematics, MDPI, vol. 9(9), pages 1-24, April.
    10. Ji, Ronglin & Shi, Xuejun & Wang, Shijie & Zhou, Jinming, 2019. "Dynamic risk measures for processes via backward stochastic differential equations," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 43-50.
    11. Andreas H. Hamel & Frank Heyde, 2021. "Set-Valued T -Translative Functions and Their Applications in Finance," Mathematics, MDPI, vol. 9(18), pages 1-33, September.
    12. Zachary Feinstein & Birgit Rudloff, 2012. "Multiportfolio time consistency for set-valued convex and coherent risk measures," Papers 1212.5563, arXiv.org, revised Oct 2014.
    13. Zachary Feinstein & Birgit Rudloff, 2015. "Multi-portfolio time consistency for set-valued convex and coherent risk measures," Finance and Stochastics, Springer, vol. 19(1), pages 67-107, January.
    14. Andreas H Hamel, 2018. "Monetary Measures of Risk," Papers 1812.04354, arXiv.org.
    15. Tomasz R. Bielecki & Igor Cialenco & Marcin Pitera, 2014. "A unified approach to time consistency of dynamic risk measures and dynamic performance measures in discrete time," Papers 1409.7028, arXiv.org, revised Sep 2017.
    16. E. Kromer & L. Overbeck & K. Zilch, 2019. "Dynamic systemic risk measures for bounded discrete time processes," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 90(1), pages 77-108, August.
    17. Kovacevic Raimund M., 2012. "Conditional risk and acceptability mappings as Banach-lattice valued mappings," Statistics & Risk Modeling, De Gruyter, vol. 29(1), pages 1-18, March.
    18. Zachary Feinstein & Birgit Rudloff, 2013. "A comparison of techniques for dynamic multivariate risk measures," Papers 1305.2151, arXiv.org, revised Jan 2015.
    19. Francesca Centrone & Emanuela Rosazza Gianin, 2020. "Capital Allocation For Set-Valued Risk Measures," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 23(01), pages 1-16, February.
    20. Shuo Gong & Yijun Hu & Linxiao Wei, 2022. "Risk measurement of joint risk of portfolios: a liquidity shortfall aspect," Papers 2212.04848, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2103.00905. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.