IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2006.05515.html
   My bibliography  Save this paper

An overall view of key problems in algorithmic trading and recent progress

Author

Listed:
  • Michael Karpe

Abstract

We summarize the fundamental issues at stake in algorithmic trading, and the progress made in this field over the last twenty years. We first present the key problems of algorithmic trading, describing the concepts of optimal execution, optimal placement, and price impact. We then discuss the most recent advances in algorithmic trading through the use of Machine Learning, discussing the use of Deep Learning, Reinforcement Learning, and Generative Adversarial Networks.

Suggested Citation

  • Michael Karpe, 2020. "An overall view of key problems in algorithmic trading and recent progress," Papers 2006.05515, arXiv.org.
  • Handle: RePEc:arx:papers:2006.05515
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2006.05515
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Obizhaeva, Anna A. & Wang, Jiang, 2013. "Optimal trading strategy and supply/demand dynamics," Journal of Financial Markets, Elsevier, vol. 16(1), pages 1-32.
    2. Stefania Albanesi & Domonkos F. Vamossy, 2019. "Predicting Consumer Default: A Deep Learning Approach," Working Papers 2019-056, Human Capital and Economic Opportunity Working Group.
    3. Luyang Chen & Markus Pelger & Jason Zhu, 2019. "Deep Learning in Asset Pricing," Papers 1904.00745, arXiv.org, revised Aug 2021.
    4. Magnus Wiese & Robert Knobloch & Ralf Korn & Peter Kretschmer, 2020. "Quant GANs: deep generation of financial time series," Quantitative Finance, Taylor & Francis Journals, vol. 20(9), pages 1419-1440, September.
    5. Tucker Hybinette Balch & Mahmoud Mahfouz & Joshua Lockhart & Maria Hybinette & David Byrd, 2019. "How to Evaluate Trading Strategies: Single Agent Market Replay or Multiple Agent Interactive Simulation?," Papers 1906.12010, arXiv.org.
    6. Svitlana Vyetrenko & David Byrd & Nick Petosa & Mahmoud Mahfouz & Danial Dervovic & Manuela Veloso & Tucker Hybinette Balch, 2019. "Get Real: Realism Metrics for Robust Limit Order Book Market Simulations," Papers 1912.04941, arXiv.org.
    7. Damiano Brigo & Clément Piat, 2018. "Static Versus Adapted Optimal Execution Strategies in Two Benchmark Trading Models," World Scientific Book Chapters, in: Kathrin Glau & Daniël Linders & Aleksey Min & Matthias Scherer & Lorenz Schneider & Rudi Zagst (ed.), Innovations in Insurance, Risk- and Asset Management, chapter 10, pages 239-273, World Scientific Publishing Co. Pte. Ltd..
    8. Magnus Wiese & Lianjun Bai & Ben Wood & Hans Buehler, 2019. "Deep Hedging: Learning to Simulate Equity Option Markets," Papers 1911.01700, arXiv.org.
    9. Weston Barger & Matthew Lorig, 2019. "Optimal Liquidation Under Stochastic Price Impact," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(02), pages 1-28, March.
    10. Dmitry Efimov & Di Xu & Luyang Kong & Alexey Nefedov & Archana Anandakrishnan, 2020. "Using generative adversarial networks to synthesize artificial financial datasets," Papers 2002.02271, arXiv.org.
    11. Adriano Koshiyama & Sebastian Flennerhag & Stefano B. Blumberg & Nick Firoozye & Philip Treleaven, 2020. "QuantNet: Transferring Learning Across Systematic Trading Strategies," Papers 2004.03445, arXiv.org, revised Jun 2020.
    12. Ying Chen & Ulrich Horst & Hoang Hai Tran, 2019. "Portfolio liquidation under transient price impact -- theoretical solution and implementation with 100 NASDAQ stocks," Papers 1912.06426, arXiv.org.
    13. Sumitra Ganesh & Nelson Vadori & Mengda Xu & Hua Zheng & Prashant Reddy & Manuela Veloso, 2019. "Reinforcement Learning for Market Making in a Multi-agent Dealer Market," Papers 1911.05892, arXiv.org.
    14. Bertsimas, Dimitris & Lo, Andrew W., 1998. "Optimal control of execution costs," Journal of Financial Markets, Elsevier, vol. 1(1), pages 1-50, April.
    15. Thomas Spooner & John Fearnley & Rahul Savani & Andreas Koukorinis, 2018. "Market Making via Reinforcement Learning," Papers 1804.04216, arXiv.org.
    16. Svitlana Vyetrenko & Shaojie Xu, 2019. "Risk-Sensitive Compact Decision Trees for Autonomous Execution in Presence of Simulated Market Response," Papers 1906.02312, arXiv.org, revised Jan 2021.
    17. Gur Huberman & Werner Stanzl, 2004. "Price Manipulation and Quasi-Arbitrage," Econometrica, Econometric Society, vol. 72(4), pages 1247-1275, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joseph Jerome & Leandro Sanchez-Betancourt & Rahul Savani & Martin Herdegen, 2022. "Model-based gym environments for limit order book trading," Papers 2209.07823, arXiv.org.
    2. Ben Hambly & Renyuan Xu & Huining Yang, 2023. "Recent advances in reinforcement learning in finance," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 437-503, July.
    3. Bruno Gašperov & Stjepan Begušić & Petra Posedel Šimović & Zvonko Kostanjčar, 2021. "Reinforcement Learning Approaches to Optimal Market Making," Mathematics, MDPI, vol. 9(21), pages 1-22, October.
    4. Samuel N. Cohen & Lukasz Szpruch, 2011. "A limit order book model for latency arbitrage," Papers 1110.4811, arXiv.org.
    5. Marcel Nutz & Kevin Webster & Long Zhao, 2023. "Unwinding Stochastic Order Flow: When to Warehouse Trades," Papers 2310.14144, arXiv.org.
    6. Aurélien Alfonsi & Alexander Schied, 2010. "Optimal trade execution and absence of price manipulations in limit order book models," Post-Print hal-00397652, HAL.
    7. Ningyuan Chen & Steven Kou & Chun Wang, 2018. "A Partitioning Algorithm for Markov Decision Processes with Applications to Market Microstructure," Management Science, INFORMS, vol. 64(2), pages 784-803, February.
    8. Ben Hambly & Renyuan Xu & Huining Yang, 2021. "Recent Advances in Reinforcement Learning in Finance," Papers 2112.04553, arXiv.org, revised Feb 2023.
    9. Aur'elien Alfonsi & Pierre Blanc, 2014. "Dynamic optimal execution in a mixed-market-impact Hawkes price model," Papers 1404.0648, arXiv.org, revised Jun 2015.
    10. Seungki Min & Costis Maglaras & Ciamac C. Moallemi, 2018. "Cross-Sectional Variation of Intraday Liquidity, Cross-Impact, and their Effect on Portfolio Execution," Papers 1811.05524, arXiv.org.
    11. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    12. Jan Kallsen & Johannes Muhle-Karbe, 2014. "High-Resilience Limits of Block-Shaped Order Books," Papers 1409.7269, arXiv.org.
    13. Yan, Tingjin & Chiu, Mei Choi & Wong, Hoi Ying, 2023. "Portfolio liquidation with delayed information," Economic Modelling, Elsevier, vol. 126(C).
    14. Masamitsu Ohnishi & Makoto Shimoshimizu, 2022. "Optimal Pair–Trade Execution with Generalized Cross–Impact," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 29(2), pages 253-289, June.
    15. Xiangge Luo & Alexander Schied, 2018. "Nash equilibrium for risk-averse investors in a market impact game with transient price impact," Papers 1807.03813, arXiv.org, revised Jun 2019.
    16. Aur'elien Alfonsi & Jos'e Infante Acevedo, 2012. "Optimal execution and price manipulations in time-varying limit order books," Papers 1204.2736, arXiv.org.
    17. Shuo Sun & Rundong Wang & Bo An, 2021. "Reinforcement Learning for Quantitative Trading," Papers 2109.13851, arXiv.org.
    18. Antje Fruth & Torsten Schöneborn & Mikhail Urusov, 2014. "Optimal Trade Execution And Price Manipulation In Order Books With Time-Varying Liquidity," Mathematical Finance, Wiley Blackwell, vol. 24(4), pages 651-695, October.
    19. Aur'elien Alfonsi & Pierre Blanc, 2015. "Extension and calibration of a Hawkes-based optimal execution model," Papers 1506.08740, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2006.05515. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.