IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1905.00238.html
   My bibliography  Save this paper

Fast Calculation of Credit Exposures for Barrier and Bermudan options using Chebyshev interpolation

Author

Listed:
  • Kathrin Glau
  • Ricardo Pachon
  • Christian Potz

Abstract

We introduce a new method to calculate the credit exposure of Bermudan, discretely monitored barrier and European options. Core of the approach is the application of the dynamic Chebyshev method of Glau et al. (2019). The dynamic Chebyshev method delivers a closed form approximation of the option prices along the paths together with the options' delta and gamma. Key advantage is the polynomial structure of the approximation, which allows us a highly efficient evaluation of the credit exposures, even for a large number of simulated paths. The approach is highly flexible in the model choice, payoff profiles and asset classes. We compute the exposure profiles for Bermudan and barrier options in three different equity models and compare them to the profiles of European options. The analysis reveals potential shortcomings of common simplifications in the exposure calculation. The proposed method is sufficiently simple and efficient to avoid such risk-bearing simplifications.

Suggested Citation

  • Kathrin Glau & Ricardo Pachon & Christian Potz, 2019. "Fast Calculation of Credit Exposures for Barrier and Bermudan options using Chebyshev interpolation," Papers 1905.00238, arXiv.org.
  • Handle: RePEc:arx:papers:1905.00238
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1905.00238
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    2. Schroder, Mark Douglas, 1989. " Computing the Constant Elasticity of Variance Option Pricing Formula," Journal of Finance, American Finance Association, vol. 44(1), pages 211-219, March.
    3. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    4. Maximilian Gaß & Kathrin Glau & Mirco Mahlstedt & Maximilian Mair, 2018. "Chebyshev interpolation for parametric option pricing," Finance and Stochastics, Springer, vol. 22(3), pages 701-731, July.
    5. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mariano Zeron & Ignacio Ruiz, 2020. "Dynamic sensitivities and Initial Margin via Chebyshev Tensors," Papers 2011.04544, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kathrin Glau & Mirco Mahlstedt & Christian Potz, 2018. "A new approach for American option pricing: The Dynamic Chebyshev method," Papers 1806.05579, arXiv.org.
    2. Kathrin Glau & Ricardo Pachon & Christian Potz, 2019. "Speed-up credit exposure calculations for pricing and risk management," Papers 1912.01280, arXiv.org.
    3. Chung, San-Lin & Shih, Pai-Ta, 2009. "Static hedging and pricing American options," Journal of Banking & Finance, Elsevier, vol. 33(11), pages 2140-2149, November.
    4. Pringles, Rolando & Olsina, Fernando & Penizzotto, Franco, 2020. "Valuation of defer and relocation options in photovoltaic generation investments by a stochastic simulation-based method," Renewable Energy, Elsevier, vol. 151(C), pages 846-864.
    5. Somayeh Moazeni & Thomas F. Coleman & Yuying Li, 2016. "Smoothing and parametric rules for stochastic mean-CVaR optimal execution strategy," Annals of Operations Research, Springer, vol. 237(1), pages 99-120, February.
    6. Duy Nguyen, 2018. "A hybrid Markov chain-tree valuation framework for stochastic volatility jump diffusion models," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(04), pages 1-30, December.
    7. Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2020. "Early Exercise Decision in American Options with Dividends, Stochastic Volatility, and Jumps," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(1), pages 331-356, February.
    8. Li, Chenxu & Ye, Yongxin, 2019. "Pricing and Exercising American Options: an Asymptotic Expansion Approach," Journal of Economic Dynamics and Control, Elsevier, vol. 107(C), pages 1-1.
    9. Volk-Makarewicz, Warren & Borovkova, Svetlana & Heidergott, Bernd, 2022. "Assessing the impact of jumps in an option pricing model: A gradient estimation approach," European Journal of Operational Research, Elsevier, vol. 298(2), pages 740-751.
    10. Antonio Cosma & Stefano Galluccio & Paola Pederzoli & O. Scaillet, 2012. "Valuing American Options Using Fast Recursive Projections," Swiss Finance Institute Research Paper Series 12-26, Swiss Finance Institute.
    11. Matthias Berger & Christian Matt & Jochen Gönsch & Thomas Hess, 2019. "Is the Time Ripe? How the Value of Waiting and Incentives Affect Users’ Switching Behaviors for Smart Home Devices," Schmalenbach Business Review, Springer;Schmalenbach-Gesellschaft, vol. 71(1), pages 91-123, February.
    12. A. -S. Chen & P. -F. Shen, 2003. "Computational complexity analysis of least-squares Monte Carlo (LSM) for pricing US derivatives," Applied Economics Letters, Taylor & Francis Journals, vol. 10(4), pages 223-229.
    13. Chen, Ding & Härkönen, Hannu J. & Newton, David P., 2014. "Advancing the universality of quadrature methods to any underlying process for option pricing," Journal of Financial Economics, Elsevier, vol. 114(3), pages 600-612.
    14. de Jong, C.M., 2005. "The Nature of Power Spikes: a regime-switch approach," ERIM Report Series Research in Management ERS-2005-052-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    15. Penizzotto, F. & Pringles, R. & Olsina, F., 2019. "Real options valuation of photovoltaic power investments in existing buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    16. Ascione, Giacomo & Mehrdoust, Farshid & Orlando, Giuseppe & Samimi, Oldouz, 2023. "Foreign Exchange Options on Heston-CIR Model Under Lévy Process Framework," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    17. Michael C. Fu & Bingqing Li & Rongwen Wu & Tianqi Zhang, 2020. "Option Pricing Under a Discrete-Time Markov Switching Stochastic Volatility with Co-Jump Model," Papers 2006.15054, arXiv.org.
    18. Roberto Andreotti Bodra & Afonso De Campos Pint, 2014. "Modelo De Volatilidade Estocástica Com Saltos Aplicado A Commodities Agrícolas," Anais do XLI Encontro Nacional de Economia [Proceedings of the 41st Brazilian Economics Meeting] 142, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    19. Katarzyna Toporek, 2012. "Simple is better. Empirical comparison of American option valuation methods," Ekonomia journal, Faculty of Economic Sciences, University of Warsaw, vol. 29.
    20. Francesco Rotondi, 2019. "American Options on High Dividend Securities: A Numerical Investigation," Risks, MDPI, vol. 7(2), pages 1-20, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1905.00238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.