IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1812.03566.html
   My bibliography  Save this paper

Mutual Conversion Between Preference Maps And Cook-Seiford Vectors

Author

Listed:
  • Fujun Hou

Abstract

In group decision making, the preference map and Cook-Seiford vector are two concepts as ways of describing ties-permitted ordinal rankings. This paper shows that they are equivalent for representing ties-permitted ordinal rankings. Transformation formulas from one to the other are given and the inherent consistency of the mutual conversion is discussed. The proposed methods are illustrated by some examples. Some possible future applications of the proposed formulas are also pointed out.

Suggested Citation

  • Fujun Hou, 2018. "Mutual Conversion Between Preference Maps And Cook-Seiford Vectors," Papers 1812.03566, arXiv.org.
  • Handle: RePEc:arx:papers:1812.03566
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1812.03566
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fujun Hou, 2016. "The Prametric-Based GDM Procedure Under Fuzzy Environment," Group Decision and Negotiation, Springer, vol. 25(5), pages 1071-1084, September.
    2. Cook, Wade D., 2006. "Distance-based and ad hoc consensus models in ordinal preference ranking," European Journal of Operational Research, Elsevier, vol. 172(2), pages 369-385, July.
    3. Wade D. Cook & Lawrence M. Seiford, 1978. "Priority Ranking and Consensus Formation," Management Science, INFORMS, vol. 24(16), pages 1721-1732, December.
    4. Ronald D. Armstrong & Wade D. Cook & Lawrence M. Seiford, 1982. "Priority Ranking and Consensus Formation: The Case of Ties," Management Science, INFORMS, vol. 28(6), pages 638-645, June.
    5. Hou, Fujun & Triantaphyllou, Evangelos, 2019. "An iterative approach for achieving consensus when ranking a finite set of alternatives by a group of experts," European Journal of Operational Research, Elsevier, vol. 275(2), pages 570-579.
    6. Fujun Hou, 2015. "A Consensus Gap Indicator and Its Application to Group Decision Making," Group Decision and Negotiation, Springer, vol. 24(3), pages 415-428, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hou, Fujun & Triantaphyllou, Evangelos, 2019. "An iterative approach for achieving consensus when ranking a finite set of alternatives by a group of experts," European Journal of Operational Research, Elsevier, vol. 275(2), pages 570-579.
    2. Fujun Hou, 2015. "A Consensus Gap Indicator and Its Application to Group Decision Making," Group Decision and Negotiation, Springer, vol. 24(3), pages 415-428, May.
    3. Triantaphyllou, Evangelos & Yanase, Juri & Hou, Fujun, 2020. "Post-consensus analysis of group decision making processes by means of a graph theoretic and an association rules mining approach," Omega, Elsevier, vol. 94(C).
    4. Hanna Bury & Dariusz Wagner, 2009. "Group judgement with ties. A position-based approach," Operations Research and Decisions, Wroclaw University of Technology, Institute of Organization and Management, vol. 4, pages 9-26.
    5. Hanna Bury & Dariusz Wagner, 2009. "Group judgment with ties. A position-based approach," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 19(4), pages 7-26.
    6. Yucheng Dong & Yao Li & Ying He & Xia Chen, 2021. "Preference–Approval Structures in Group Decision Making: Axiomatic Distance and Aggregation," Decision Analysis, INFORMS, vol. 18(4), pages 273-295, December.
    7. Fujun Hou, 2016. "The Prametric-Based GDM Procedure Under Fuzzy Environment," Group Decision and Negotiation, Springer, vol. 25(5), pages 1071-1084, September.
    8. Yeawon Yoo & Adolfo R. Escobedo, 2021. "A New Binary Programming Formulation and Social Choice Property for Kemeny Rank Aggregation," Decision Analysis, INFORMS, vol. 18(4), pages 296-320, December.
    9. Andrea Aveni & Ludovico Crippa & Giulio Principi, 2024. "On the Weighted Top-Difference Distance: Axioms, Aggregation, and Approximation," Papers 2403.15198, arXiv.org, revised Mar 2024.
    10. Jabeur, Khaled & Martel, Jean-Marc, 2007. "An ordinal sorting method for group decision-making," European Journal of Operational Research, Elsevier, vol. 180(3), pages 1272-1289, August.
    11. Evangelos Triantaphyllou & Fujun Hou & Juri Yanase, 2020. "Analysis of the Final Ranking Decisions Made by Experts After a Consensus has Been Reached in Group Decision Making," Group Decision and Negotiation, Springer, vol. 29(2), pages 271-291, April.
    12. Cook, Wade D. & Kress, Moshe & Seiford, Lawrence M., 1997. "A general framework for distance-based consensus in ordinal ranking models," European Journal of Operational Research, Elsevier, vol. 96(2), pages 392-397, January.
    13. Gilbert Laffond & Jean Lainé & M. Remzi Sanver, 2020. "Metrizable preferences over preferences," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 55(1), pages 177-191, June.
    14. Cook, Wade D., 2006. "Distance-based and ad hoc consensus models in ordinal preference ranking," European Journal of Operational Research, Elsevier, vol. 172(2), pages 369-385, July.
    15. Yeşilçimen, Ali & Yıldırım, E. Alper, 2019. "An alternative polynomial-sized formulation and an optimization based heuristic for the reviewer assignment problem," European Journal of Operational Research, Elsevier, vol. 276(2), pages 436-450.
    16. Bowen Zhang & Yucheng Dong & Enrique Herrera-Viedma, 2019. "Group Decision Making with Heterogeneous Preference Structures: An Automatic Mechanism to Support Consensus Reaching," Group Decision and Negotiation, Springer, vol. 28(3), pages 585-617, June.
    17. Slim Ben Khelifa & Jean-Marc Martel, 2001. "A Distance-Based Collective Weak Ordering," Group Decision and Negotiation, Springer, vol. 10(4), pages 317-329, July.
    18. Hiroki Nishimura & Efe A. Ok, 2022. "A class of dissimilarity semimetrics for preference relations," Papers 2203.04418, arXiv.org.
    19. Amodio, S. & D’Ambrosio, A. & Siciliano, R., 2016. "Accurate algorithms for identifying the median ranking when dealing with weak and partial rankings under the Kemeny axiomatic approach," European Journal of Operational Research, Elsevier, vol. 249(2), pages 667-676.
    20. Franceschini, Fiorenzo & Maisano, Domenico, 2015. "Checking the consistency of the solution in ordinal semi-democratic decision-making problems," Omega, Elsevier, vol. 57(PB), pages 188-195.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1812.03566. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.