IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1809.08635.html
   My bibliography  Save this paper

Exact Solutions for a GBM-type Stochastic Volatility Model having a Stationary Distribution

Author

Listed:
  • Alan L. Lewis

Abstract

We find various exact solutions for a new stochastic volatility (SV) model: the transition probability density, European-style option values, and (when it exists) the martingale defect. This may represent the first example of an SV model combining exact solutions, GBM-type volatility noise, and a stationary volatility density.

Suggested Citation

  • Alan L. Lewis, 2018. "Exact Solutions for a GBM-type Stochastic Volatility Model having a Stationary Distribution," Papers 1809.08635, arXiv.org, revised May 2019.
  • Handle: RePEc:arx:papers:1809.08635
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1809.08635
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alan L. Lewis, 1998. "Applications of Eigenfunction Expansions in Continuous‐Time Finance," Mathematical Finance, Wiley Blackwell, vol. 8(4), pages 349-383, October.
    2. Peter Christoffersen & Kris Jacobs & Karim Mimouni, 2010. "Volatility Dynamics for the S&P500: Evidence from Realized Volatility, Daily Returns, and Option Prices," The Review of Financial Studies, Society for Financial Studies, vol. 23(8), pages 3141-3189, August.
    3. Yiannis A. Papadopoulos & Alan L. Lewis, 2018. "A First Option Calibration of the GARCH Diffusion Model by a PDE Method," Papers 1801.06141, arXiv.org.
    4. Alan L. Lewis, 2000. "Option Valuation under Stochastic Volatility," Option Valuation under Stochastic Volatility, Finance Press, number ovsv, December.
    5. Martin Tegnér & Rolf Poulsen, 2018. "Volatility Is Log-Normal—But Not for the Reason You Think," Risks, MDPI, vol. 6(2), pages 1-16, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peter Carr & Sander Willems, 2019. "A lognormal type stochastic volatility model with quadratic drift," Papers 1908.07417, arXiv.org.
    2. Kaustav Das & Nicolas Langren'e, 2020. "Explicit approximations of option prices via Malliavin calculus in a general stochastic volatility framework," Papers 2006.01542, arXiv.org, revised Jan 2024.
    3. Sigurd Emil Rømer & Rolf Poulsen, 2020. "How Does the Volatility of Volatility Depend on Volatility?," Risks, MDPI, vol. 8(2), pages 1-18, June.
    4. Kaustav Das & Nicolas Langren'e, 2018. "Closed-form approximations with respect to the mixing solution for option pricing under stochastic volatility," Papers 1812.07803, arXiv.org, revised Oct 2021.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicolas Langrené & Geoffrey Lee & Zili Zhu, 2016. "Switching To Nonaffine Stochastic Volatility: A Closed-Form Expansion For The Inverse Gamma Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(05), pages 1-37, August.
    2. Bertram During & Christian Hendricks & James Miles, 2016. "Sparse grid high-order ADI scheme for option pricing in stochastic volatility models," Papers 1611.01379, arXiv.org.
    3. Bertram During & James Miles, 2015. "High-order ADI scheme for option pricing in stochastic volatility models," Papers 1512.02529, arXiv.org.
    4. Peter Carr & Andrey Itkin, 2019. "ADOL - Markovian approximation of rough lognormal model," Papers 1904.09240, arXiv.org.
    5. Likuan Qin & Vadim Linetsky, 2016. "Positive Eigenfunctions of Markovian Pricing Operators: Hansen-Scheinkman Factorization, Ross Recovery, and Long-Term Pricing," Operations Research, INFORMS, vol. 64(1), pages 99-117, February.
    6. Martin Tegnér & Rolf Poulsen, 2018. "Volatility Is Log-Normal—But Not for the Reason You Think," Risks, MDPI, vol. 6(2), pages 1-16, April.
    7. Kim, See-Woo & Kim, Jeong-Hoon, 2019. "Variance swaps with double exponential Ornstein-Uhlenbeck stochastic volatility," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 149-169.
    8. Hu, Jun & Kanniainen, Juho, 2015. "Asymptotic expansion of European options with mean-reverting stochastic volatility dynamics," Finance Research Letters, Elsevier, vol. 14(C), pages 1-10.
    9. Nicolas Langren'e & Geoffrey Lee & Zili Zhu, 2015. "Switching to non-affine stochastic volatility: A closed-form expansion for the Inverse Gamma model," Papers 1507.02847, arXiv.org, revised Mar 2016.
    10. Likuan Qin & Vadim Linetsky, 2014. "Positive Eigenfunctions of Markovian Pricing Operators: Hansen-Scheinkman Factorization, Ross Recovery and Long-Term Pricing," Papers 1411.3075, arXiv.org, revised Sep 2015.
    11. Peter Carr & Sander Willems, 2019. "A lognormal type stochastic volatility model with quadratic drift," Papers 1908.07417, arXiv.org.
    12. Carol Alexander & Andreas Kaeck, 2012. "Does model fit matter for hedging? Evidence from FTSE 100 options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 32(7), pages 609-638, July.
    13. Wu, Xin-Yu & Ma, Chao-Qun & Wang, Shou-Yang, 2012. "Warrant pricing under GARCH diffusion model," Economic Modelling, Elsevier, vol. 29(6), pages 2237-2244.
    14. Alan L. Lewis, 2001. "A Simple Option Formula for General Jump-Diffusion and other Exponential Levy Processes," Related articles explevy, Finance Press.
    15. Baldeaux, Jan & Ignatieva, Katja & Platen, Eckhard, 2018. "Detecting money market bubbles," Journal of Banking & Finance, Elsevier, vol. 87(C), pages 369-379.
    16. Cui, Zhenyu & Lars Kirkby, J. & Nguyen, Duy, 2017. "A general framework for discretely sampled realized variance derivatives in stochastic volatility models with jumps," European Journal of Operational Research, Elsevier, vol. 262(1), pages 381-400.
    17. Christoffersen, Peter & Heston, Steven & Jacobs, Kris, 2010. "Option Anomalies and the Pricing Kernel," Working Papers 11-17, University of Pennsylvania, Wharton School, Weiss Center.
    18. Bertram During & Christof Heuer, 2016. "Essentially high-order compact schemes with application to stochastic volatility models on non-uniform grids," Papers 1611.00316, arXiv.org.
    19. Chenxu Li, 2014. "Closed-Form Expansion, Conditional Expectation, and Option Valuation," Mathematics of Operations Research, INFORMS, vol. 39(2), pages 487-516, May.
    20. Fisher, Travis & Pulido, Sergio & Ruf, Johannes, 2019. "Financial models with defaultable numéraires," LSE Research Online Documents on Economics 84973, London School of Economics and Political Science, LSE Library.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1809.08635. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.