IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1802.10244.html
   My bibliography  Save this paper

RACORN-K: Risk-Aversion Pattern Matching-based Portfolio Selection

Author

Listed:
  • Yang Wang
  • Dong Wang
  • Yaodong Wang
  • You Zhang

Abstract

Portfolio selection is the central task for assets management, but it turns out to be very challenging. Methods based on pattern matching, particularly the CORN-K algorithm, have achieved promising performance on several stock markets. A key shortage of the existing pattern matching methods, however, is that the risk is largely ignored when optimizing portfolios, which may lead to unreliable profits, particularly in volatile markets. We present a risk-aversion CORN-K algorithm, RACORN-K, that penalizes risk when searching for optimal portfolios. Experiments on four datasets (DJIA, MSCI, SP500(N), HSI) demonstrate that the new algorithm can deliver notable and reliable improvements in terms of return, Sharp ratio and maximum drawdown, especially on volatile markets.

Suggested Citation

  • Yang Wang & Dong Wang & Yaodong Wang & You Zhang, 2018. "RACORN-K: Risk-Aversion Pattern Matching-based Portfolio Selection," Papers 1802.10244, arXiv.org.
  • Handle: RePEc:arx:papers:1802.10244
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1802.10244
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Györfi László & Udina Frederic & Walk Harro, 2008. "Nonparametric nearest neighbor based empirical portfolio selection strategies," Statistics & Risk Modeling, De Gruyter, vol. 26(2), pages 145-157, March.
    2. Jegadeesh, Narasimhan, 1990. "Evidence of Predictable Behavior of Security Returns," Journal of Finance, American Finance Association, vol. 45(3), pages 881-898, July.
    3. David P. Helmbold & Robert E. Schapire & Yoram Singer & Manfred K. Warmuth, 1998. "On‐Line Portfolio Selection Using Multiplicative Updates," Mathematical Finance, Wiley Blackwell, vol. 8(4), pages 325-347, October.
    4. László Györfi & Gábor Lugosi & Frederic Udina, 2006. "Nonparametric Kernel‐Based Sequential Investment Strategies," Mathematical Finance, Wiley Blackwell, vol. 16(2), pages 337-357, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Man Yiu Tsang & Tony Sit & Hoi Ying Wong, 2022. "Adaptive Robust Online Portfolio Selection," Papers 2206.01064, arXiv.org.
    2. Bin Li & Steven C. H. Hoi, 2012. "Online Portfolio Selection: A Survey," Papers 1212.2129, arXiv.org, revised May 2013.
    3. Ha, Youngmin & Zhang, Hai, 2020. "Algorithmic trading for online portfolio selection under limited market liquidity," European Journal of Operational Research, Elsevier, vol. 286(3), pages 1033-1051.
    4. Vajda, István & Ottucsák, György, 2006. "Empirikus portfólióstratégiák [Empirical portfolio strategies]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(7), pages 624-640.
    5. Guy Uziel & Ran El-Yaniv, 2017. "Growth-Optimal Portfolio Selection under CVaR Constraints," Papers 1705.09800, arXiv.org.
    6. Guo, Sini & Gu, Jia-Wen & Ching, Wai-Ki, 2021. "Adaptive online portfolio selection with transaction costs," European Journal of Operational Research, Elsevier, vol. 295(3), pages 1074-1086.
    7. Seung-Hyun Moon & Yong-Hyuk Kim & Byung-Ro Moon, 2019. "Empirical investigation of state-of-the-art mean reversion strategies for equity markets," Papers 1909.04327, arXiv.org.
    8. Bin Li & Steven C. H. Hoi, 2012. "On-Line Portfolio Selection with Moving Average Reversion," Papers 1206.4626, arXiv.org.
    9. Seung-Hyun Moon & Yourim Yoon, 2022. "Genetic Mean Reversion Strategy for Online Portfolio Selection with Transaction Costs," Mathematics, MDPI, vol. 10(7), pages 1-20, March.
    10. Roujia Li & Jia Liu, 2022. "Online Portfolio Selection with Long-Short Term Forecasting," SN Operations Research Forum, Springer, vol. 3(4), pages 1-15, December.
    11. Ting-Kam Leonard Wong, 2015. "Universal portfolios in stochastic portfolio theory," Papers 1510.02808, arXiv.org, revised Dec 2016.
    12. Zhengyao Jiang & Dixing Xu & Jinjun Liang, 2017. "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem," Papers 1706.10059, arXiv.org, revised Jul 2017.
    13. Shuo Sun & Rundong Wang & Bo An, 2021. "Reinforcement Learning for Quantitative Trading," Papers 2109.13851, arXiv.org.
    14. Victor DeMiguel & Francisco J. Nogales & Raman Uppal, 2014. "Stock Return Serial Dependence and Out-of-Sample Portfolio Performance," The Review of Financial Studies, Society for Financial Studies, vol. 27(4), pages 1031-1073.
    15. Guo, Sini & Gu, Jia-Wen & Fok, Christopher H. & Ching, Wai-Ki, 2023. "Online portfolio selection with state-dependent price estimators and transaction costs," European Journal of Operational Research, Elsevier, vol. 311(1), pages 333-353.
    16. Sancetta, A., 2007. "Online Forecast Combination for Dependent Heterogeneous Data," Cambridge Working Papers in Economics 0718, Faculty of Economics, University of Cambridge.
    17. Kailin Xie & Jianfei Yin & Hengyong Yu & Hong Fu & Ying Chu, 2024. "Passive Aggressive Ensemble for Online Portfolio Selection," Mathematics, MDPI, vol. 12(7), pages 1-19, March.
    18. Tim Gebbie & Fayyaaz Loonat, 2016. "Learning zero-cost portfolio selection with pattern matching," Papers 1605.04600, arXiv.org.
    19. Ottucsák György & Vajda István, 2007. "An asymptotic analysis of the mean-variance portfolio selection," Statistics & Risk Modeling, De Gruyter, vol. 25(1/2007), pages 1-24, January.
    20. Yong Zhang & Hong Lin & Lina Zheng & Xingyu Yang, 2022. "Adaptive online portfolio strategy based on exponential gradient updates," Journal of Combinatorial Optimization, Springer, vol. 43(3), pages 672-696, April.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1802.10244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.