Advanced Search
MyIDEAS: Login to save this paper or follow this series

On-Line Portfolio Selection with Moving Average Reversion

Contents:

Author Info

  • Bin Li

    (NTU)

  • Steven C. H. Hoi

    (NTU)

Registered author(s):

    Abstract

    On-line portfolio selection has attracted increasing interests in machine learning and AI communities recently. Empirical evidences show that stock's high and low prices are temporary and stock price relatives are likely to follow the mean reversion phenomenon. While the existing mean reversion strategies are shown to achieve good empirical performance on many real datasets, they often make the single-period mean reversion assumption, which is not always satisfied in some real datasets, leading to poor performance when the assumption does not hold. To overcome the limitation, this article proposes a multiple-period mean reversion, or so-called Moving Average Reversion (MAR), and a new on-line portfolio selection strategy named "On-Line Moving Average Reversion" (OLMAR), which exploits MAR by applying powerful online learning techniques. From our empirical results, we found that OLMAR can overcome the drawback of existing mean reversion algorithms and achieve significantly better results, especially on the datasets where the existing mean reversion algorithms failed. In addition to superior trading performance, OLMAR also runs extremely fast, further supporting its practical applicability to a wide range of applications.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://arxiv.org/pdf/1206.4626
    File Function: Latest version
    Download Restriction: no

    Bibliographic Info

    Paper provided by arXiv.org in its series Papers with number 1206.4626.

    as in new window
    Length:
    Date of creation: Jun 2012
    Date of revision:
    Handle: RePEc:arx:papers:1206.4626

    Contact details of provider:
    Web page: http://arxiv.org/

    Related research

    Keywords:

    This paper has been announced in the following NEP Reports:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Gaivoronski, A & Stella, F, 2000. "Nonstationary Optimization Approach for Finding Universal Portfolios," MPRA Paper 21913, University Library of Munich, Germany.
    2. David P. Helmbold & Robert E. Schapire & Yoram Singer & Manfred K. Warmuth, 1998. "On-Line Portfolio Selection Using Multiplicative Updates," Mathematical Finance, Wiley Blackwell, vol. 8(4), pages 325-347.
    3. László Györfi & Gábor Lugosi & Frederic Udina, 2006. "Nonparametric Kernel-Based Sequential Investment Strategies," Mathematical Finance, Wiley Blackwell, vol. 16(2), pages 337-357.
    4. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, 03.
    5. Thomas M. Cover, 1991. "Universal Portfolios," Mathematical Finance, Wiley Blackwell, vol. 1(1), pages 1-29.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:arx:papers:1206.4626. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.