IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1710.05168.html
   My bibliography  Save this paper

Dynamic Portfolio Optimization with Looping Contagion Risk

Author

Listed:
  • Longjie Jia
  • Martijn Pistorius
  • Harry Zheng

Abstract

In this paper we consider a utility maximization problem with defaultable stocks and looping contagion risk. We assume that the default intensity of one company depends on the stock prices of itself and other companies, and the default of the company induces immediate drops in the stock prices of the surviving companies. We prove that the value function is the unique viscosity solution of the HJB equation. We also perform some numerical tests to compare and analyse the statistical distributions of the terminal wealth of log utility and power utility based on two strategies, one using the full information of intensity process and the other a proxy constant intensity process.

Suggested Citation

  • Longjie Jia & Martijn Pistorius & Harry Zheng, 2017. "Dynamic Portfolio Optimization with Looping Contagion Risk," Papers 1710.05168, arXiv.org, revised Aug 2018.
  • Handle: RePEc:arx:papers:1710.05168
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1710.05168
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. repec:dau:papers:123456789/5717 is not listed on IDEAS
    2. Ralf Korn & Holger Kraft, 2003. "Optimal Portfolios With Defaultable Securities A Firm Value Approach," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 6(08), pages 793-819.
    3. Robert A. Jarrow & Fan Yu, 2008. "Counterparty Risk and the Pricing of Defaultable Securities," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 20, pages 481-515, World Scientific Publishing Co. Pte. Ltd..
    4. Yuanfeng Hou & Xiangrong Jin, 2002. "Optimal Investment With Default Risk," FAME Research Paper Series rp46b, International Center for Financial Asset Management and Engineering.
    5. Agostino Capponi & Jose E. Figueroa-Lopez, 2011. "Dynamic Portfolio Optimization with a Defaultable Security and Regime Switching," Papers 1105.0042, arXiv.org, revised Sep 2011.
    6. Jia-Wen Gu & Wai-Ki Ching & Tak-Kuen Siu & Harry Zheng, 2013. "On pricing basket credit default swaps," Quantitative Finance, Taylor & Francis Journals, vol. 13(12), pages 1845-1854, December.
    7. Ying Jiao & Huyên Pham, 2011. "Optimal investment with counterparty risk: a default-density model approach," Finance and Stochastics, Springer, vol. 15(4), pages 725-753, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng-Hui Yu & Wai-Ki Ching & Jia-Wen Gu & Tak-Kuen Siu, 2017. "Interacting default intensity with a hidden Markov process," Quantitative Finance, Taylor & Francis Journals, vol. 17(5), pages 781-794, May.
    2. Lijun Bo & Xindan Li & Yongjin Wang & Xuewei Yang, 2013. "Optimal Investment and Consumption with Default Risk: HARA Utility," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 20(3), pages 261-281, September.
    3. Tomasz Bielecki & Inwon Jang, 2006. "Portfolio optimization with a defaultable security," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 13(2), pages 113-127, June.
    4. Liang, Xue & Wang, Guojing, 2012. "On a reduced form credit risk model with common shock and regime switching," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 567-575.
    5. Idris Kharroubi & Thomas Lim, 2014. "Progressive Enlargement of Filtrations and Backward Stochastic Differential Equations with Jumps," Journal of Theoretical Probability, Springer, vol. 27(3), pages 683-724, September.
    6. Geon Ho Choe & Hyun Jin Jang & Soon Won Kwon, 2015. "A factor contagion model for portfolio credit derivatives," Quantitative Finance, Taylor & Francis Journals, vol. 15(9), pages 1571-1582, September.
    7. Lijun Bo & Agostino Capponi, 2017. "Optimal Credit Investment with Borrowing Costs," Mathematics of Operations Research, INFORMS, vol. 42(2), pages 546-575, May.
    8. Giovanni W. Puopolo, 2015. "Portfolio Selection with Transaction Costs and Default Risk," CSEF Working Papers 414, Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy.
    9. Feng-Hui Yu & Jiejun Lu & Jia-Wen Gu & Wai-Ki Ching, 2019. "Modeling Credit Risk with Hidden Markov Default Intensity," Computational Economics, Springer;Society for Computational Economics, vol. 54(3), pages 1213-1229, October.
    10. Loon, Yee Cheng & Zhong, Zhaodong Ken, 2014. "The impact of central clearing on counterparty risk, liquidity, and trading: Evidence from the credit default swap market," Journal of Financial Economics, Elsevier, vol. 112(1), pages 91-115.
    11. Alain Monfort & Jean-Paul Renne, 2013. "Default, Liquidity, and Crises: an Econometric Framework," Journal of Financial Econometrics, Oxford University Press, vol. 11(2), pages 221-262, March.
    12. Bao, Qunfang & Li, Shenghong & Liu, Guimei, 2010. "Survival Measures and Interacting Intensity Model: with Applications in Guaranteed Debt Pricing," MPRA Paper 27698, University Library of Munich, Germany, revised 27 Dec 2010.
    13. Samson Assefa, 2007. "Pricing Swaptions and Credit Default Swaptions in the Quadratic Gaussian Factor Model," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 31, July-Dece.
    14. Li Chen & Damir Filipovic, 2003. "Pricing Credit Default Swaps Under Default Correlations and Counterparty Risk," Finance 0303009, University Library of Munich, Germany.
    15. Fisher, Travis & Pulido, Sergio & Ruf, Johannes, 2019. "Financial models with defaultable numéraires," LSE Research Online Documents on Economics 84973, London School of Economics and Political Science, LSE Library.
    16. Shahzad, Syed Jawad Hussain & Nor, Safwan Mohd & Kumar, Ronald Ravinesh & Mensi, Walid, 2017. "Interdependence and contagion among industry-level US credit markets: An application of wavelet and VMD based copula approaches," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 310-324.
    17. Wen-Qiong Liu & Wen-Li Huang, 2019. "Hedging Of Synthetic Cdo Tranches With Spread And Default Risk Based On A Combined Forecasting Approach," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(02), pages 1-17, March.
    18. Xiao, Tim, 2013. "The Impact of Default Dependency and Collateralization on Asset Pricing and Credit Risk Modeling," MPRA Paper 47136, University Library of Munich, Germany.
    19. D. V. Boreiko & Y. M. Kaniovski & G. Ch. Pflug, 2016. "Modeling dependent credit rating transitions: a comparison of coupling schemes and empirical evidence," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 24(4), pages 989-1007, December.
    20. Pagès, Henri, 2013. "Bank monitoring incentives and optimal ABS," Journal of Financial Intermediation, Elsevier, vol. 22(1), pages 30-54.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1710.05168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.