IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1701.08299.html
   My bibliography  Save this paper

Computing the aggregate loss distribution based on numerical inversion of the compound empirical characteristic function of frequency and severity

Author

Listed:
  • Viktor Witkovsky
  • Gejza Wimmer
  • Tomas Duby

Abstract

A non-parametric method for evaluation of the aggregate loss distribution (ALD) by combining and numerically inverting the empirical characteristic functions (CFs) is presented and illustrated. This approach to evaluate ALD is based on purely non-parametric considerations, i.e., based on the empirical CFs of frequency and severity of the claims in the actuarial risk applications. This approach can be, however, naturally generalized to a more complex semi-parametric modeling approach, e.g., by incorporating the generalized Pareto distribution fit of the severity distribution heavy tails, and/or by considering the weighted mixture of the parametric CFs (used to model the expert knowledge) and the empirical CFs (used to incorporate the knowledge based on the historical data - internal and/or external). Here we present a simple and yet efficient method and algorithms for numerical inversion of the CF, suitable for evaluation of the ALDs and the associated measures of interest important for applications, as, e.g., the value at risk (VaR). The presented approach is based on combination of the Gil-Pelaez inversion formulae for deriving the probability distribution (PDF and CDF) from the compound (empirical) CF and the trapezoidal rule used for numerical integration. The applicability of the suggested approach is illustrated by analysis of a well know insurance dataset, the Danish fire loss data.

Suggested Citation

  • Viktor Witkovsky & Gejza Wimmer & Tomas Duby, 2017. "Computing the aggregate loss distribution based on numerical inversion of the compound empirical characteristic function of frequency and severity," Papers 1701.08299, arXiv.org.
  • Handle: RePEc:arx:papers:1701.08299
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1701.08299
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eling, Martin, 2012. "Fitting insurance claims to skewed distributions: Are the skew-normal and skew-student good models?," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 239-248.
    2. Rob Kaas & Marc Goovaerts & Jan Dhaene & Michel Denuit, 2008. "Modern Actuarial Risk Theory," Springer Books, Springer, edition 2, number 978-3-540-70998-5, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mahmood Kharrati-Kopaei, 2021. "On the exact distribution of the likelihood ratio test statistic for testing the homogeneity of the scale parameters of several inverse Gaussian distributions," Computational Statistics, Springer, vol. 36(2), pages 1123-1138, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eling, Martin & Wirfs, Jan Hendrik, 2016. "Cyber Risk: Too Big to Insure? Risk Transfer Options for a mercurial risk class," I.VW HSG Schriftenreihe, University of St.Gallen, Institute of Insurance Economics (I.VW-HSG), volume 59, number 59.
    2. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    3. Härdle, Wolfgang Karl & Burnecki, Krzysztof & Weron, Rafał, 2004. "Simulation of risk processes," Papers 2004,01, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    4. Kume, Alfred & Hashorva, Enkelejd, 2012. "Calculation of Bayes premium for conditional elliptical risks," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 632-635.
    5. Anthropelos, Michail & Boonen, Tim J., 2020. "Nash equilibria in optimal reinsurance bargaining," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 196-205.
    6. Tzougas, George & Hoon, W. L. & Lim, J. M., 2019. "The negative binomial-inverse Gaussian regression model with an application to insurance ratemaking," LSE Research Online Documents on Economics 101728, London School of Economics and Political Science, LSE Library.
    7. Deprez, Laurens & Antonio, Katrien & Boute, Robert, 2021. "Pricing service maintenance contracts using predictive analytics," European Journal of Operational Research, Elsevier, vol. 290(2), pages 530-545.
    8. Boj del Val, Eva & Costa Cor, Teresa, 2017. "Provisions for claims outstanding, incurred but not reported, with generalized linear models: prediction error formulated according to calendar year," Cuadernos de Gestión, Universidad del País Vasco - Instituto de Economía Aplicada a la Empresa (IEAE).
    9. Nadja Klein & Michel Denuit & Stefan Lang & Thomas Kneib, 2013. "Nonlife Ratemaking and Risk Management with Bayesian Additive Models for Location, Scale and Shape," Working Papers 2013-24, Faculty of Economics and Statistics, Universität Innsbruck.
    10. Alexandra Moura & Carlos Oliveira, 2024. "Reputation risk mitigation in investment strategies," Working Papers REM 2024/0309, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    11. Castañer, A. & Claramunt, M.M. & Lefèvre, C., 2013. "Survival probabilities in bivariate risk models, with application to reinsurance," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 632-642.
    12. Ketelbuters, John John & Hainaut, Donatien, 2021. "Time-Consistent Evaluation of Credit Risk with Contagion," LIDAM Discussion Papers ISBA 2021004, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    13. Goovaerts, Marc & Linders, Daniël & Van Weert, Koen & Tank, Fatih, 2012. "On the interplay between distortion, mean value and Haezendonck–Goovaerts risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 10-18.
    14. Mourdoukoutas, Fotios & Boonen, Tim J. & Koo, Bonsoo & Pantelous, Athanasios A., 2021. "Pricing in a competitive stochastic insurance market," Insurance: Mathematics and Economics, Elsevier, vol. 97(C), pages 44-56.
    15. Nicola Loperfido & Tomer Shushi, 2023. "Optimal Portfolio Projections for Skew-Elliptically Distributed Portfolio Returns," Journal of Optimization Theory and Applications, Springer, vol. 199(1), pages 143-166, October.
    16. Mohamed Amine Lkabous & Jean-François Renaud, 2018. "A VaR-Type Risk Measure Derived from Cumulative Parisian Ruin for the Classical Risk Model," Risks, MDPI, vol. 6(3), pages 1-11, August.
    17. Tang, Qihe & Yang, Fan, 2012. "On the Haezendonck–Goovaerts risk measure for extreme risks," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 217-227.
    18. Yann Braouezec & John Cagnol, 2023. "Theoretical Foundations of Community Rating by a Private Monopolist Insurer: Framework, Regulation, and Numerical Analysis," Papers 2309.15269, arXiv.org, revised Dec 2023.
    19. Pablo Azcue & Nora Muler, 2013. "Minimizing the ruin probability allowing investments in two assets: a two-dimensional problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(2), pages 177-206, April.
    20. Julien Trufin & Stéphane Loisel, 2013. "Ultimate ruin probability in discrete time with Bühlmann credibility premium adjustments," Post-Print hal-00426790, HAL.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1701.08299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.