IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1303.4082.html
   My bibliography  Save this paper

Instantaneous mean-variance hedging and instantaneous Sharpe ratio pricing in a regime-switching financial model, with applications to equity-linked claims

Author

Listed:
  • {L}ukasz Delong
  • Antoon Pelsser

Abstract

We study hedging and pricing of unattainable contingent claims in a non-Markovian regime-switching financial model. Our financial market consists of a bank account and a risky asset whose dynamics are driven by a Brownian motion and a multivariate counting process with stochastic intensities. The interest rate, drift, volatility and intensities fluctuate over time and, in particular, they depend on the state (regime) of the economy which is modelled by the multivariate counting process. Hence, we can allow for stressed market conditions. We assume that the trajectory of the risky asset is continuous between the transition times for the states of the economy and that the value of the risky asset jumps at the time of the transition. We find the hedging strategy which minimizes the instantaneous mean-variance risk of the hedger's surplus and we set the price so that the instantaneous Sharpe ratio of the hedger's surplus equals a predefined target. We use Backward Stochastic Differential Equations. Interestingly, the instantaneous mean-variance hedging and instantaneous Sharpe ratio pricing can be related to no-good-deal pricing and robust pricing and hedging under model ambiguity. We discuss key properties of the optimal price and the optimal hedging strategy. We also use our results to price and hedge mortality-contingent claims with financial components (equity-linked insurance claims) in a combined insurance and regime-switching financial model.

Suggested Citation

  • {L}ukasz Delong & Antoon Pelsser, 2013. "Instantaneous mean-variance hedging and instantaneous Sharpe ratio pricing in a regime-switching financial model, with applications to equity-linked claims," Papers 1303.4082, arXiv.org.
  • Handle: RePEc:arx:papers:1303.4082
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1303.4082
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jose Scheinkman & René Carmona & Erhan Cinlare & Ivar Ekeland & Elyès Jouini & Nizar Touzi, 2010. "Paris-Princeton Lectures on Mathematical Finance," Post-Print halshs-00706281, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander M. G. Cox & Christoph Hoeggerl, 2013. "Model-independent no-arbitrage conditions on American put options," Papers 1301.5467, arXiv.org.
    2. Tavin, Bertrand, 2015. "Detection of arbitrage in a market with multi-asset derivatives and known risk-neutral marginals," Journal of Banking & Finance, Elsevier, vol. 53(C), pages 158-178.
    3. Vladimir Vovk, 2012. "Continuous-time trading and the emergence of probability," Finance and Stochastics, Springer, vol. 16(4), pages 561-609, October.
    4. B. Cooper Boniece & Jos'e E. Figueroa-L'opez & Yuchen Han, 2022. "Efficient Volatility Estimation for L\'evy Processes with Jumps of Unbounded Variation," Papers 2202.00877, arXiv.org.
    5. Cox, Alexander M.G. & Obłój, Jan, 2015. "On joint distributions of the maximum, minimum and terminal value of a continuous uniformly integrable martingale," Stochastic Processes and their Applications, Elsevier, vol. 125(8), pages 3280-3300.
    6. Christoph Belak & Daniel Hoffmann & Frank T. Seifried, 2020. "Continuous-Time Mean Field Games with Finite StateSpace and Common Noise," Working Paper Series 2020-05, University of Trier, Research Group Quantitative Finance and Risk Analysis.
    7. Régis Chenavaz & Corina Paraschiv & Gabriel Turinici, 2021. "Dynamic Pricing of New Products in Competitive Markets: A Mean-Field Game Approach," Dynamic Games and Applications, Springer, vol. 11(3), pages 463-490, September.
    8. S. Heise & R. Kühn, 2012. "Derivatives and credit contagion in interconnected networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 85(4), pages 1-19, April.
    9. Takuji Arai & Yuto Imai & Ryoichi Suzuki, 2016. "Numerical Analysis On Local Risk-Minimization For Exponential Lévy Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(02), pages 1-27, March.
    10. Alexander M. G. Cox & Jiajie Wang, 2011. "Root's barrier: Construction, optimality and applications to variance options," Papers 1104.3583, arXiv.org, revised Mar 2013.
    11. A. Philip Dawid & Steven de Rooij & Peter Grunwald & Wouter M. Koolen & Glenn Shafer & Alexander Shen & Nikolai Vereshchagin & Vladimir Vovk, 2011. "Probability-free pricing of adjusted American lookbacks," Papers 1108.4113, arXiv.org.
    12. Jos'e E. Figueroa-L'opez & Ruoting Gong & Yuchen Han, 2021. "Estimation of Tempered Stable L\'{e}vy Models of Infinite Variation," Papers 2101.00565, arXiv.org, revised Feb 2022.
    13. Takuji Arai & Yuto Imai & Ryoichi Suzuki, 2015. "Numerical analysis on local risk-minimization forexponential L\'evy models," Papers 1506.03898, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1303.4082. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.