Advanced Search
MyIDEAS: Login to save this paper or follow this series

The Heston Riemannian distance function

Contents:

Author Info

  • Archil Gulisashvili
  • Peter Laurence
Registered author(s):

    Abstract

    The Heston model is a popular stock price model with stochastic volatility that has found numerous applications in practice. In the present paper, we study the Riemannian distance function associated with the Heston model and obtain explicit formulas for this function using geometrical and analytical methods. Geometrical approach is based on the study of the Heston geodesics, while the analytical approach exploits the links between the Heston distance function and the sub-Riemannian distance function in the Grushin plane. For the Grushin plane, we establish an explicit formula for the Legendre-Fenchel transform of the limiting cumulant generating function and prove a partial large deviation principle that is true only inside a special set.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://arxiv.org/pdf/1302.2337
    File Function: Latest version
    Download Restriction: no

    Bibliographic Info

    Paper provided by arXiv.org in its series Papers with number 1302.2337.

    as in new window
    Length:
    Date of creation: Feb 2013
    Date of revision:
    Handle: RePEc:arx:papers:1302.2337

    Contact details of provider:
    Web page: http://arxiv.org/

    Related research

    Keywords:

    This paper has been announced in the following NEP Reports:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Martin Forde & Antoine Jacquier, 2009. "Small-Time Asymptotics For Implied Volatility Under The Heston Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 12(06), pages 861-876.
    2. Martin Forde & Antoine Jacquier & Aleksandar Mijatovic, 2009. "Asymptotic formulae for implied volatility in the Heston model," Papers 0911.2992, arXiv.org, revised May 2010.
    3. Martin Forde & Antoine Jacquier, 2011. "Small-Time Asymptotics for an Uncorrelated Local-Stochastic Volatility Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 18(6), pages 517-535, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:arx:papers:1302.2337. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.