IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1208.2658.html
   My bibliography  Save this paper

Degenerate-elliptic operators in mathematical finance and higher-order regularity for solutions to variational equations

Author

Listed:
  • Paul M. N. Feehan
  • Camelia A. Pop

Abstract

We establish higher-order weighted Sobolev and Holder regularity for solutions to variational equations defined by the elliptic Heston operator, a linear second-order degenerate-elliptic operator arising in mathematical finance. Furthermore, given $C^\infty$-smooth data, we prove $C^\infty$-regularity of solutions up to the portion of the boundary where the operator is degenerate. In mathematical finance, solutions to obstacle problems for the elliptic Heston operator correspond to value functions for perpetual American-style options on the underlying asset.

Suggested Citation

  • Paul M. N. Feehan & Camelia A. Pop, 2012. "Degenerate-elliptic operators in mathematical finance and higher-order regularity for solutions to variational equations," Papers 1208.2658, arXiv.org, revised Nov 2014.
  • Handle: RePEc:arx:papers:1208.2658
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1208.2658
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. JosE Da Fonseca & Martino Grasselli & Claudio Tebaldi, 2008. "A multifactor volatility Heston model," Quantitative Finance, Taylor & Francis Journals, vol. 8(6), pages 591-604.
    2. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gaetano Bua & Daniele Marazzina, 2021. "On the application of Wishart process to the pricing of equity derivatives: the multi-asset case," Computational Management Science, Springer, vol. 18(2), pages 149-176, June.
    2. H. Bertholon & A. Monfort & F. Pegoraro, 2008. "Econometric Asset Pricing Modelling," Journal of Financial Econometrics, Oxford University Press, vol. 6(4), pages 407-458, Fall.
    3. Paul M. N. Feehan, 2012. "Maximum principles for boundary-degenerate second-order linear elliptic differential operators," Papers 1204.6613, arXiv.org, revised Sep 2013.
    4. Mehrdoust, Farshid & Noorani, Idin & Hamdi, Abdelouahed, 2023. "Two-factor Heston model equipped with regime-switching: American option pricing and model calibration by Levenberg–Marquardt optimization algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 660-678.
    5. Manabu Asai & Michael McAleer, 2017. "A fractionally integrated Wishart stochastic volatility model," Econometric Reviews, Taylor & Francis Journals, vol. 36(1-3), pages 42-59, March.
    6. Takashi Kato & Jun Sekine & Kenichi Yoshikawa, 2013. "Order Estimates for the Exact Lugannani-Rice Expansion," Papers 1310.3347, arXiv.org, revised Jun 2014.
    7. Marcos Escobar & Christoph Gschnaidtner, 2018. "A multivariate stochastic volatility model with applications in the foreign exchange market," Review of Derivatives Research, Springer, vol. 21(1), pages 1-43, April.
    8. Zhang, Sumei & Gao, Xiong, 2019. "An asymptotic expansion method for geometric Asian options pricing under the double Heston model," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 1-9.
    9. Alessandro Gnoatto & Martino Grasselli, 2011. "The explicit Laplace transform for the Wishart process," Papers 1107.2748, arXiv.org, revised Aug 2013.
    10. Marcos Escobar & Daniel Krause & Rudi Zagst, 2016. "Stochastic covariance and dimension reduction in the pricing of basket options," Review of Derivatives Research, Springer, vol. 19(3), pages 165-200, October.
    11. Richter, Anja, 2014. "Explicit solutions to quadratic BSDEs and applications to utility maximization in multivariate affine stochastic volatility models," Stochastic Processes and their Applications, Elsevier, vol. 124(11), pages 3578-3611.
    12. Da Fonseca, José, 2016. "On moment non-explosions for Wishart-based stochastic volatility models," European Journal of Operational Research, Elsevier, vol. 254(3), pages 889-894.
    13. Jacinto Marabel Romo, 2016. "Is the information obtained from European options on equally weighted baskets enough to determine the prices of exotic derivatives such as worst-of options?," Review of Derivatives Research, Springer, vol. 19(1), pages 65-83, April.
    14. Chulmin Kang & Wanmo Kang & Jong Mun Lee, 2017. "Exact Simulation of the Wishart Multidimensional Stochastic Volatility Model," Operations Research, INFORMS, vol. 65(5), pages 1190-1206, October.
    15. Oliva, I. & Renò, R., 2018. "Optimal portfolio allocation with volatility and co-jump risk that Markowitz would like," Journal of Economic Dynamics and Control, Elsevier, vol. 94(C), pages 242-256.
    16. Eduardo Abi Jaber, 2019. "Lifting the Heston model," Post-Print hal-01890751, HAL.
    17. Chulmin Kang & Wanmo Kang, 2013. "Exact Simulation of Wishart Multidimensional Stochastic Volatility Model," Papers 1309.0557, arXiv.org.
    18. Filipović, Damir & Mayerhofer, Eberhard & Schneider, Paul, 2013. "Density approximations for multivariate affine jump-diffusion processes," Journal of Econometrics, Elsevier, vol. 176(2), pages 93-111.
    19. Jonathan Ziveyi, 2011. "The Evaluation of Early Exercise Exotic Options," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 12, July-Dece.
    20. Kazuki Nagashima & Tsz-Kin Chung & Keiichi Tanaka, 2014. "Asymptotic Expansion Formula of Option Price Under Multifactor Heston Model," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 21(4), pages 351-396, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1208.2658. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.