Advanced Search
MyIDEAS: Login

On covariation estimation for multivariate continuous Itô semimartingales with noise in non-synchronous observation schemes

Contents:

Author Info

  • Kim Christensen

    ()
    (Aarhus University and CREATES)

  • Mark Podolskij

    ()
    (University of Heidelberg and CREATES)

  • Mathias Vetter

    ()
    (Ruhr-Universität Bochum, Fakultät für Mathematik)

Abstract

This paper presents a Hayashi-Yoshida type estimator for the covariation matrix of continuous Itô semimartingales observed with noise. The coordinates of the multivariate process are assumed to be observed at highly frequent nonsynchronous points. The estimator of the covariation matrix is designed via a certain combination of the local averages and the Hayashi-Yoshida estimator. Our method does not require any synchronization of the observation scheme (as e.g. previous tick method or refreshing time method) and it is robust to some dependence structure of the noise process. We show the associated central limit theorem for the proposed estimator and provide a feasible asymptotic result. Our proofs are based on a blocking technique and a stable convergence theorem for semimartingales. Finally, we show simulation results for the proposed estimator to illustrate its finite sample properties.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: ftp://ftp.econ.au.dk/creates/rp/11/rp11_53.pdf
Download Restriction: no

Bibliographic Info

Paper provided by School of Economics and Management, University of Aarhus in its series CREATES Research Papers with number 2011-53.

as in new window
Length: 42
Date of creation: 02 Dec 2011
Date of revision:
Handle: RePEc:aah:create:2011-53

Contact details of provider:
Web page: http://www.econ.au.dk/afn/

Related research

Keywords: central limit theorem; Hayashi-Yoshida estimator; high frequency observations; Itô semimartingale; pre-averaging; stable convergence.;

Other versions of this item:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Kim Christensen & Silja Kinnebrock & Mark Podolskij, 2010. "Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data," Post-Print peer-00732537, HAL.
  2. Neil Shephard & Ole E. Barndorff-Nielsen, 2006. "Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise," Economics Series Working Papers 2006-W03, University of Oxford, Department of Economics.
  3. Christensen, Kim & Oomen, Roel & Podolskij, Mark, 2010. "Realised quantile-based estimation of the integrated variance," Journal of Econometrics, Elsevier, vol. 159(1), pages 74-98, November.
  4. Jacod, Jean & Li, Yingying & Mykland, Per A. & Podolskij, Mark & Vetter, Mathias, 2009. "Microstructure noise in the continuous case: The pre-averaging approach," Stochastic Processes and their Applications, Elsevier, vol. 119(7), pages 2249-2276, July.
  5. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2011. "Multivariate realised kernels: Consistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous trading," Post-Print peer-00815564, HAL.
  6. Mark Podolskij & Mathias Vetter, 2008. "Bipower-type estimation in a noisy diffusion setting," CREATES Research Papers 2008-25, School of Economics and Management, University of Aarhus.
  7. Lan Zhang & Per A. Mykland & Yacine Ait-Sahalia, 2003. "A Tale of Two Time Scales: Determining Integrated Volatility with Noisy High Frequency Data," NBER Working Papers 10111, National Bureau of Economic Research, Inc.
  8. Markus Bibinger, 2011. "Efficient Covariance Estimation for Asynchronous Noisy High‐Frequency Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics & Finnish Statistical Society & Norwegian Statistical Association & Swedish Statistical Association, vol. 38(1), pages 23-45, 03.
  9. Bandi, Federico M. & Russell, Jeffrey R., 2006. "Separating microstructure noise from volatility," Journal of Financial Economics, Elsevier, vol. 79(3), pages 655-692, March.
  10. Jacod, Jean, 2008. "Asymptotic properties of realized power variations and related functionals of semimartingales," Stochastic Processes and their Applications, Elsevier, vol. 118(4), pages 517-559, April.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Yuta Koike, 2013. "Limit Theorems for the Pre-averaged Hayashi-Yoshida Estimator with Random Sampling," Global COE Hi-Stat Discussion Paper Series gd12-276, Institute of Economic Research, Hitotsubashi University.
  2. Koike, Yuta, 2014. "Limit theorems for the pre-averaged Hayashi–Yoshida estimator with random sampling," Stochastic Processes and their Applications, Elsevier, vol. 124(8), pages 2699-2753.
  3. Randolf Altmeyer & Markus Bibinger, 2014. "Functional stable limit theorems for efficient spectral covolatility estimators," SFB 649 Discussion Papers SFB649DP2014-005, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  4. Markus Bibinger & Per A. Mykland, 2013. "Inference for Multi-Dimensional High-Frequency Data: Equivalence of Methods, Central Limit Theorems, and an Application to Conditional Independence Testing," SFB 649 Discussion Papers SFB649DP2013-006, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  5. Markus Bibinger & Lars Winkelmann, 2013. "Econometrics of co-jumps in high-frequency data with noise," SFB 649 Discussion Papers SFB649DP2013-021, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  6. Markus Bibinger & Nikolaus Hautsch & Peter Malec & Markus Reiss, 2013. "Estimating the Quadratic Covariation Matrix from Noisy Observations: Local Method of Moments and Efficiency," SFB 649 Discussion Papers SFB649DP2013-017, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:aah:create:2011-53. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.