IDEAS home Printed from https://ideas.repec.org/h/spr/isochp/978-0-387-72778-3_9.html
   My bibliography  Save this book chapter

Dynamic User Equilibrium

In: Dynamic Optimization and Differential Games

Author

Listed:
  • Terry L. Friesz

    (Pennsylvania State University)

Abstract

Dynamic traffic assignment (DTA) is the positive (descriptive) modeling of time-varying flows of automobiles on road networks consistent with established traffic flow theory and travel demand theory. Dynamic user equilibrium (DUE) is one type of DTA wherein the effective unit travel delay, including early and late arrival penalties, of travel for the same purpose is identical for all utilized path and departure time pairs. In the context of planning, DUE is usually modelled for the within-day time scale based on demands established on a day-to-day time scale.

Suggested Citation

  • Terry L. Friesz, 2010. "Dynamic User Equilibrium," International Series in Operations Research & Management Science, in: Dynamic Optimization and Differential Games, chapter 0, pages 411-456, Springer.
  • Handle: RePEc:spr:isochp:978-0-387-72778-3_9
    DOI: 10.1007/978-0-387-72778-3_9
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sung Hoon Chung & Robert D. Weaver & Hyun Woo Jeon, 2020. "Sustainable Management of Remanufacturing in Dynamic Supply Chains," Networks and Spatial Economics, Springer, vol. 20(3), pages 703-731, September.
    2. Ma, Rui & Zhang, Michael & Kleeman, Michael, 2019. "A Study of the Integrated Parking and Ridesharing Pricing/Incentives and their Social and Environmental Impacts in Metropolitan Areas," Institute of Transportation Studies, Working Paper Series qt2t55g89p, Institute of Transportation Studies, UC Davis.
    3. Qixiu Cheng & Zhiyuan Liu & Feifei Liu & Ruo Jia, 2017. "Urban dynamic congestion pricing: an overview and emerging research needs," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 21(0), pages 3-18, August.
    4. Rui Ma & Xuegang Ban & Jong-Shi Pang & Henry Liu, 2015. "Submission to the DTA2012 Special Issue: Convergence of Time Discretization Schemes for Continuous-Time Dynamic Network Loading Models," Networks and Spatial Economics, Springer, vol. 15(3), pages 419-441, September.
    5. Ban, Xuegang (Jeff) & Pang, Jong-Shi & Liu, Henry X. & Ma, Rui, 2012. "Continuous-time point-queue models in dynamic network loading," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 360-380.
    6. Ke Han & Terry L. Friesz, 2017. "Continuity of the Effective Delay Operator for Networks Based on the Link Delay Model," Networks and Spatial Economics, Springer, vol. 17(4), pages 1095-1110, December.
    7. Yu, Hao & Ma, Rui & Zhang, H. Michael, 2018. "Optimal traffic signal control under dynamic user equilibrium and link constraints in a general network," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 302-325.
    8. Yan-Qun Jiang & S.C. Wong & Peng Zhang & Keechoo Choi, 2017. "Dynamic Continuum Model with Elastic Demand for a Polycentric Urban City," Transportation Science, INFORMS, vol. 51(3), pages 931-945, August.
    9. Rui Ma & Xuegang Ban & Jong-Shi Pang & Henry Liu, 2015. "Submission to the DTA2012 Special Issue: Approximating Time Delays in Solving Continuous-Time Dynamic User Equilibria," Networks and Spatial Economics, Springer, vol. 15(3), pages 443-463, September.
    10. Ban, Xuegang (Jeff) & Pang, Jong-Shi & Liu, Henry X. & Ma, Rui, 2012. "Modeling and solving continuous-time instantaneous dynamic user equilibria: A differential complementarity systems approach," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 389-408.
    11. Rui Ma & Xuegang (Jeff) Ban & Jong-Shi Pang, 2018. "A Link-Based Differential Complementarity System Formulation for Continuous-Time Dynamic User Equilibria with Queue Spillbacks," Transportation Science, INFORMS, vol. 52(3), pages 564-592, June.
    12. Long, Jiancheng & Szeto, W.Y. & Huang, Hai-Jun & Gao, Ziyou, 2015. "An intersection-movement-based stochastic dynamic user optimal route choice model for assessing network performance," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 182-217.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-0-387-72778-3_9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.