IDEAS home Printed from https://ideas.repec.org/a/wsi/ijtafx/v20y2017i04ns0219024917500285.html
   My bibliography  Save this article

Efficient Piecewise Trees For The Generalized Skew Vasicek Model With Discontinuous Drift

Author

Listed:
  • XIAOYANG ZHUO

    (Department of Financial Management, Business School, Nankai University, Tianjin, 300071, P. R. China)

  • OLIVIER MENOUKEU-PAMEN

    (African Institute for Mathematical Sciences, Ghana, University of Ghana, Ghana3Institute for Financial and Actuarial Mathematics, University of Liverpool, Liverpool, L69 7ZL, United Kingdom)

Abstract

In this paper, we explore two new tree lattice methods, the piecewise binomial tree and the piecewise trinomial tree for both the bond prices and European/American bond option prices assuming that the short rate is given by a generalized skew Vasicek model with discontinuous drift coefficient. These methods build nonuniform jump size piecewise binomial/trinomial tree based on a tractable piecewise process, which is derived from the original process according to a transform. Numerical experiments of bonds and European/American bond options show that our approaches are efficient as well as reveal several price features of our model.

Suggested Citation

  • Xiaoyang Zhuo & Olivier Menoukeu-Pamen, 2017. "Efficient Piecewise Trees For The Generalized Skew Vasicek Model With Discontinuous Drift," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(04), pages 1-34, June.
  • Handle: RePEc:wsi:ijtafx:v:20:y:2017:i:04:n:s0219024917500285
    DOI: 10.1142/S0219024917500285
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219024917500285
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219024917500285?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Beliaeva, Natalia & Nawalkha, Sanjay, 2012. "Pricing American interest rate options under the jump-extended constant-elasticity-of-variance short rate models," Journal of Banking & Finance, Elsevier, vol. 36(1), pages 151-163.
    2. Guangli Xu & Shiyu Song & Yongjin Wang, 2016. "The Valuation Of Options On Foreign Exchange Rate In A Target Zone," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(03), pages 1-19, May.
    3. Decamps, Marc & De Schepper, Ann & Goovaerts, Marc, 2004. "Applications of δ-function perturbation to the pricing of derivative securities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 342(3), pages 677-692.
    4. Pfann, Gerard A. & Schotman, Peter C. & Tschernig, Rolf, 1996. "Nonlinear interest rate dynamics and implications for the term structure," Journal of Econometrics, Elsevier, vol. 74(1), pages 149-176, September.
    5. Boyle, Phelim P., 1988. "A Lattice Framework for Option Pricing with Two State Variables," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 23(1), pages 1-12, March.
    6. T. R. A. Corns & S. E. Satchell, 2007. "Skew Brownian Motion and Pricing European Options," The European Journal of Finance, Taylor & Francis Journals, vol. 13(6), pages 523-544.
    7. Song, Shiyu & Wang, Suxin & Wang, Yongjin, 2015. "First hitting times for doubly skewed Ornstein–Uhlenbeck processes," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 212-222.
    8. Bardia Kamrad & Peter Ritchken, 1991. "Multinomial Approximating Models for Options with k State Variables," Management Science, INFORMS, vol. 37(12), pages 1640-1652, December.
    9. Rossello, Damiano, 2012. "Arbitrage in skew Brownian motion models," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 50-56.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bai, Yizhou & Xue, Cheng, 2021. "An empirical study on the regulated Chinese agricultural commodity futures market based on skew Ornstein-Uhlenbeck model," Research in International Business and Finance, Elsevier, vol. 57(C).
    2. Yizhou Bai & Yongjin Wang & Haoyan Zhang & Xiaoyang Zhuo, 2022. "Bayesian Estimation of the Skew Ornstein-Uhlenbeck Process," Computational Economics, Springer;Society for Computational Economics, vol. 60(2), pages 479-527, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    2. Yuan Hu & W. Brent Lindquist & Svetlozar T. Rachev & Frank J. Fabozzi, 2023. "Option pricing using a skew random walk pricing tree," Papers 2303.17014, arXiv.org.
    3. Donald J. Brown & Rustam Ibragimov, 2005. "Sign Tests for Dependent Observations and Bounds for Path-Dependent Options," Cowles Foundation Discussion Papers 1518, Cowles Foundation for Research in Economics, Yale University.
    4. Tian, Yingxu & Zhang, Haoyan, 2018. "Skew CIR process, conditional characteristic function, moments and bond pricing," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 230-238.
    5. Ren-Raw Chen & Jeffrey Huang & William Huang & Robert Yu, 2021. "An Artificial Intelligence Approach to the Valuation of American-Style Derivatives: A Use of Particle Swarm Optimization," JRFM, MDPI, vol. 14(2), pages 1-22, February.
    6. Dirk Sierag & Bernard Hanzon, 2018. "Pricing derivatives on multiple assets: recombining multinomial trees based on Pascal’s simplex," Annals of Operations Research, Springer, vol. 266(1), pages 101-127, July.
    7. Bowei Chen & Jun Wang, 2014. "A lattice framework for pricing display advertisement options with the stochastic volatility underlying model," Papers 1409.0697, arXiv.org, revised Dec 2015.
    8. Donald Brown & Rustam Ibragimov, 2005. "Sign Tests for Dependent Observations and Bounds for Path-Dependent Options," Yale School of Management Working Papers amz2581, Yale School of Management, revised 01 Jul 2005.
    9. Milanesi, Gastón, 2021. "Modelo de valoración con opciones reales, rejillas trinomial, volatilidad cambiante, sesgo y función isoelástica de utilidad || Valuation model with real options, trinomial lattice, changing volatilit," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 32(1), pages 257-273, December.
    10. Mark Broadie & Jérôme Detemple, 1996. "Recent Advances in Numerical Methods for Pricing Derivative Securities," CIRANO Working Papers 96s-17, CIRANO.
    11. Hussain, Sultan & Arif, Hifsa & Noorullah, Muhammad & Pantelous, Athanasios A., 2023. "Pricing American Options under Azzalini Ito-McKean Skew Brownian Motions," Applied Mathematics and Computation, Elsevier, vol. 451(C).
    12. Gagliardini, Patrick & Ronchetti, Diego, 2013. "Semi-parametric estimation of American option prices," Journal of Econometrics, Elsevier, vol. 173(1), pages 57-82.
    13. Nicolas P. B. Bollen & Berk A. Sensoy, 2022. "How much for a haircut? Illiquidity, secondary markets, and the value of private equity," Financial Management, Financial Management Association International, vol. 51(2), pages 501-538, June.
    14. Antoine Lejay & Paolo Pigato, 2017. "A threshold model for local volatility: evidence of leverage and mean reversion effects on historical data," Working Papers hal-01669082, HAL.
    15. Yuh‐Dauh Lyuu & Yu‐Quan Zhang, 2023. "Pricing multiasset time‐varying double‐barrier options with time‐dependent parameters," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(3), pages 404-434, March.
    16. Jun Maeda & Saul D. Jacka, 2017. "An Optimal Stopping Problem Modeling Technical Analysis," Papers 1707.05253, arXiv.org, revised Mar 2020.
    17. Antoine Lejay & Paolo Pigato, 2019. "A Threshold Model For Local Volatility: Evidence Of Leverage And Mean Reversion Effects On Historical Data," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(04), pages 1-24, June.
    18. Josheski Dushko & Apostolov Mico, 2020. "A Review of the Binomial and Trinomial Models for Option Pricing and their Convergence to the Black-Scholes Model Determined Option Prices," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 24(2), pages 53-85, June.
    19. Vladislav Kargin, 2005. "Lattice Option Pricing By Multidimensional Interpolation," Mathematical Finance, Wiley Blackwell, vol. 15(4), pages 635-647, October.
    20. Yizhou Bai & Zhiyu Guo, 2019. "An Empirical Investigation to the “Skew” Phenomenon in Stock Index Markets: Evidence from the Nikkei 225 and Others," Sustainability, MDPI, vol. 11(24), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:20:y:2017:i:04:n:s0219024917500285. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.