IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v31y2011i1p108-119.html
   My bibliography  Save this article

Variability and Uncertainty in Swedish Exposure Factors for Use in Quantitative Exposure Assessments

Author

Listed:
  • Monika Filipsson
  • Tomas Öberg
  • Bo Bergbäck

Abstract

Information of exposure factors used in quantitative risk assessments has previously been compiled and reported for U.S. and European populations. However, due to the advancement of science and knowledge, these reports are in continuous need of updating with new data. Equally important is the change over time of many exposure factors related to both physiological characteristics and human behavior. Body weight, skin surface, time use, and dietary habits are some of the most obvious examples covered here. A wealth of data is available from literature not primarily gathered for the purpose of risk assessment. Here we review a number of key exposure factors and compare these factors between northern Europe—here represented by Sweden—and the United States. Many previous compilations of exposure factor data focus on interindividual variability and variability between sexes and age groups, while uncertainty is mainly dealt with in a qualitative way. In this article variability is assessed along with uncertainty. As estimates of central tendency and interindividual variability, mean, standard deviation, skewness, kurtosis, and multiple percentiles were calculated, while uncertainty was characterized using 95% confidence intervals for these parameters. The presented statistics are appropriate for use in deterministic analyses using point estimates for each input parameter as well as in probabilistic assessments.

Suggested Citation

  • Monika Filipsson & Tomas Öberg & Bo Bergbäck, 2011. "Variability and Uncertainty in Swedish Exposure Factors for Use in Quantitative Exposure Assessments," Risk Analysis, John Wiley & Sons, vol. 31(1), pages 108-119, January.
  • Handle: RePEc:wly:riskan:v:31:y:2011:i:1:p:108-119
    DOI: 10.1111/j.1539-6924.2010.01464.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1539-6924.2010.01464.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1539-6924.2010.01464.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Per Sander & Bo Bergbäck & Tomas Öberg, 2006. "Uncertain Numbers and Uncertainty in the Selection of Input Distributions—Consequences for a Probabilistic Risk Assessment of Contaminated Land," Risk Analysis, John Wiley & Sons, vol. 26(5), pages 1363-1375, October.
    2. V. Vuori & R. T. Zaleski & M. J. Jantunen, 2006. "ExpoFacts—An Overview of European Exposure Factors Data," Risk Analysis, John Wiley & Sons, vol. 26(3), pages 831-843, June.
    3. Kenneth Portier & J. Keith Tolson & Stephen M. Roberts, 2007. "Body Weight Distributions for Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 27(1), pages 11-26, February.
    4. Bruce S. Binkowitz & Daniel Wartenberg, 2001. "Disparity in Quantitative Risk Assessment: A Review of Input Distributions," Risk Analysis, John Wiley & Sons, vol. 21(1), pages 75-90, February.
    5. Brent Finley & Deborah Proctor & Paul Scott & Natalie Harrington & Dennis Paustenbach & Paul Price, 1994. "Recommended Distributions for Exposure Factors Frequently Used in Health Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 14(4), pages 533-553, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martí Nadal & Vikas Kumar & Marta Schuhmacher & José L. Domingo, 2008. "Applicability of a Neuroprobabilistic Integral Risk Index for the Environmental Management of Polluted Areas: A Case Study," Risk Analysis, John Wiley & Sons, vol. 28(2), pages 271-286, April.
    2. Randy L. Maddalena & Thomas E. McKone & Michael D. Sohn, 2004. "Standardized Approach for Developing Probabilistic Exposure Factor Distributions," Risk Analysis, John Wiley & Sons, vol. 24(5), pages 1185-1199, October.
    3. Charles N. Haas, 1997. "Importance of Distributional Form in Characterizing Inputs to Monte Carlo Risk Assessments," Risk Analysis, John Wiley & Sons, vol. 17(1), pages 107-113, February.
    4. Daniel J. Rozell & Sheldon J. Reaven, 2012. "Water Pollution Risk Associated with Natural Gas Extraction from the Marcellus Shale," Risk Analysis, John Wiley & Sons, vol. 32(8), pages 1382-1393, August.
    5. Rosemary T. Zaleski & Peter P. Egeghy & Pertti J. Hakkinen, 2016. "Exploring Global Exposure Factors Resources for Use in Consumer Exposure Assessments," IJERPH, MDPI, vol. 13(7), pages 1-26, July.
    6. Lyda Zambrano & Kerry Sublette & Kathleen Duncan & Greg Thoma, 2007. "Probabilistic Reliability Modeling for Oil Exploration & Production (E&P) Facilities in the Tallgrass Prairie Preserve," Risk Analysis, John Wiley & Sons, vol. 27(5), pages 1323-1333, October.
    7. Dale Hattis & J Prerna Banati & Rob Goble & David E. Burmaster, 1999. "Human Interindividual Variability in Parameters Related to Health Risks," Risk Analysis, John Wiley & Sons, vol. 19(4), pages 711-726, August.
    8. Richard R. Lester & Laura C. Green & Igor Linkov, 2007. "Site‐Specific Applications of Probabilistic Health Risk Assessment: Review of the Literature Since 2000," Risk Analysis, John Wiley & Sons, vol. 27(3), pages 635-658, June.
    9. Matthias Wormuth & Evangelia Demou & Martin Scheringer & Konrad Hungerbühler, 2007. "Assessments of Direct Human Exposure—The Approach of EU Risk Assessments Compared to Scenario‐Based Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 27(4), pages 979-990, August.
    10. Per Sander & Bo Bergbäck & Tomas Öberg, 2006. "Uncertain Numbers and Uncertainty in the Selection of Input Distributions—Consequences for a Probabilistic Risk Assessment of Contaminated Land," Risk Analysis, John Wiley & Sons, vol. 26(5), pages 1363-1375, October.
    11. Muhammad Sarfraz Iqbal & Tomas Öberg, 2013. "Description and Propagation of Uncertainty in Input Parameters in Environmental Fate Models," Risk Analysis, John Wiley & Sons, vol. 33(7), pages 1353-1366, July.
    12. S. N. Rai & D. Krewski, 1998. "Uncertainty and Variability Analysis in Multiplicative Risk Models," Risk Analysis, John Wiley & Sons, vol. 18(1), pages 37-45, February.
    13. Gilberto Montibeller & L. Alberto Franco & Ashley Carreras, 2020. "A Risk Analysis Framework for Prioritizing and Managing Biosecurity Threats," Risk Analysis, John Wiley & Sons, vol. 40(11), pages 2462-2477, November.
    14. Paul S. Price & Paul K. Scott & Natalie D. Wilson & Dennis J. Paustenbach, 1998. "An Empirical Approach for Deriving Information on Total Duration of Exposure from Information on Historical Exposure," Risk Analysis, John Wiley & Sons, vol. 18(5), pages 611-619, October.
    15. Paul S. Price & Cynthia L. Curry & Philip E. Goodrum & Michael N. Gray & Jane I. McCrodden & Natalie W. Harrington & Heather Carlson‐Lynch & Russell E. Keenan, 1996. "Monte Carlo Modeling of Time‐Dependent Exposures Using a Microexposure Event Approach," Risk Analysis, John Wiley & Sons, vol. 16(3), pages 339-348, June.
    16. Yakov Ben‐Haim, 2012. "Doing Our Best: Optimization and the Management of Risk," Risk Analysis, John Wiley & Sons, vol. 32(8), pages 1326-1332, August.
    17. Shogo Takahara & Maiko Ikegami & Minoru Yoneda & Hitoshi Kondo & Azusa Ishizaki & Masashi Iijima & Yoko Shimada & Yasuto Matsui, 2017. "Bioaccessibility of Fukushima‐Accident‐Derived Cs in Soils and the Contribution of Soil Ingestion to Radiation Doses in Children," Risk Analysis, John Wiley & Sons, vol. 37(7), pages 1256-1267, July.
    18. Kai Lessmann & Andreas Beyer & Jörg Klasmeier & Michael Matthies, 2005. "Influence of Distributional Shape of Substance Parameters on Exposure Model Output," Risk Analysis, John Wiley & Sons, vol. 25(5), pages 1137-1145, October.
    19. Collin J. Preftakes & Jerome J. Schleier III & Robert K.D. Peterson, 2011. "Bystander Exposure to Ultra-Low-Volume Insecticide Applications Used for Adult Mosquito Management," IJERPH, MDPI, vol. 8(6), pages 1-11, June.
    20. Viscusi, W. Kip & Hamilton, James T. & Dockins, P. Christen, 1997. "Conservative versus Mean Risk Assessments: Implications for Superfund Policies," Journal of Environmental Economics and Management, Elsevier, vol. 34(3), pages 187-206, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:31:y:2011:i:1:p:108-119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.