IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v29y2009i7p985-999.html
   My bibliography  Save this article

The Influence of Weather Conditions on the Relative Incident Rate of Fishing Vessels

Author

Listed:
  • Yue Wu
  • Ronald P. Pelot
  • Casey Hilliard

Abstract

There is a long history of studying the relationship between weather and maritime activities. This article analyzes the link between relative incident rate (RIR) and general weather factors within certain gridded areas and time periods. The study area, which encompasses a broad extent of Atlantic Canadian waters, includes fishing incidents recorded by the Canadian Coast Guard from 1997 to 1999. Methodologies used for traffic track generation in a geographical information system and aggregation of all relevant weather data needed for the statistical analyses are presented. Ultimately, a regression tree was built to illustrate the relationship between incident rate and the following six weather factors: wave height; sea surface temperature; air temperature; ice concentration; fog presence; and precipitation. Results from the regression tree reveal that the RIR defined as (incident number per area‐day)/(traffic amount per area‐day) across grid cells with incidents, increases as the weather conditions deteriorate in a general way, and the concentration of ice has the biggest influence on the magnitude of incident rates for a given level of traffic exposure. The results from this analysis may assist administrators of maritime traffic, especially those associated with fishing activities, through a better understanding of the influence on RIR of certain weather conditions within given areas in specific time periods.

Suggested Citation

  • Yue Wu & Ronald P. Pelot & Casey Hilliard, 2009. "The Influence of Weather Conditions on the Relative Incident Rate of Fishing Vessels," Risk Analysis, John Wiley & Sons, vol. 29(7), pages 985-999, July.
  • Handle: RePEc:wly:riskan:v:29:y:2009:i:7:p:985-999
    DOI: 10.1111/j.1539-6924.2009.01217.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1539-6924.2009.01217.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1539-6924.2009.01217.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Timothy G. Fowler & Eirik Sørgård, 2000. "Modeling Ship Transportation Risk," Risk Analysis, John Wiley & Sons, vol. 20(2), pages 225-244, April.
    2. Wayne Talley, 1999. "The safety of sea transport: determinants of crew injuries," Applied Economics, Taylor & Francis Journals, vol. 31(11), pages 1365-1372.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adland, Roar & Jia, Haiying & Lode, Tønnes & Skontorp, Jørgen, 2021. "The value of meteorological data in marine risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    2. Du, Lei & Goerlandt, Floris & Kujala, Pentti, 2020. "Review and analysis of methods for assessing maritime waterway risk based on non-accident critical events detected from AIS data," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    3. Wang, Huanxin & Liu, Zhengjiang & Wang, Xinjian & Graham, Tony & Wang, Jin, 2021. "An analysis of factors affecting the severity of marine accidents," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    4. Jinfen Zhang & Ângelo P Teixeira & C. Guedes Soares & Xinping Yan & Kezhong Liu, 2016. "Maritime Transportation Risk Assessment of Tianjin Port with Bayesian Belief Networks," Risk Analysis, John Wiley & Sons, vol. 36(6), pages 1171-1187, June.
    5. Christelle Viauroux & Ali Gungor, 2016. "An Empirical Analysis of Life Jacket Effectiveness in Recreational Boating," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 302-319, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christopher S Decker & William Corcoran & David T Flynn, 2011. "Shipwrecks on the Great Lakes and the Lake Carriers Association," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 37(4), pages 450-469.
    2. Carine Dominguez-Péry & Lakshmi Narasimha Raju Vuddaraju & Isabelle Corbett-Etchevers & Rana Tassabehji, 2021. "Reducing maritime accidents in ships by tackling human error: a bibliometric review and research agenda," Journal of Shipping and Trade, Springer, vol. 6(1), pages 1-32, December.
    3. Jason R. W. Merrick & Claire A. Dorsey & Bo Wang & Martha Grabowski & John R. Harrald, 2022. "Measuring Prediction Accuracy in a Maritime Accident Warning System," Production and Operations Management, Production and Operations Management Society, vol. 31(2), pages 819-827, February.
    4. Suyi Li & Qiang Meng & Xiaobo Qu, 2012. "An Overview of Maritime Waterway Quantitative Risk Assessment Models," Risk Analysis, John Wiley & Sons, vol. 32(3), pages 496-512, March.
    5. J Montewka & P Krata & F Goerlandt & A Mazaheri & P Kujala, 2011. "Marine traffic risk modelling – an innovative approach and a case study," Journal of Risk and Reliability, , vol. 225(3), pages 307-322, September.
    6. Guo, Yunlong & Jin, Yongxing & Hu, Shenping & Yang, Zaili & Xi, Yongtao & Han, Bing, 2023. "Risk evolution analysis of ship pilotage operation by an integrated model of FRAM and DBN," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    7. Ma, Xiaoxue & Deng, Wanyi & Qiao, Weiliang & Lan, He, 2022. "A methodology to quantify the risk propagation of hazardous events for ship grounding accidents based on directed CN," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    8. Michele Bristow & Liping Fang & Keith W. Hipel, 2012. "System of Systems Engineering and Risk Management of Extreme Events: Concepts and Case Study," Risk Analysis, John Wiley & Sons, vol. 32(11), pages 1935-1955, November.
    9. Jason R. W. Merrick & John R. Harrald, 2007. "Making Decisions About Safety in US Ports and Waterways," Interfaces, INFORMS, vol. 37(3), pages 240-252, June.
    10. Alberto Solana‐Ortega & Vicente Solana, 2007. "What Comes After the Prestige Disaster? An Entropic Approach to Modeling the Recurrence of Major Oil Tanker Spills in Galicia," Risk Analysis, John Wiley & Sons, vol. 27(4), pages 901-920, August.
    11. J. Dorp & Jason Merrick, 2011. "On a risk management analysis of oil spill risk using maritime transportation system simulation," Annals of Operations Research, Springer, vol. 187(1), pages 249-277, July.
    12. Meifeng Luo & Sung-Ho Shin & Young-Tae Chang, 2017. "Duration analysis for recurrent ship accidents," Maritime Policy & Management, Taylor & Francis Journals, vol. 44(5), pages 603-622, July.
    13. Jason R. W. Merrick & J. Rene Van Dorp & Varun Dinesh, 2005. "Assessing Uncertainty in Simulation‐Based Maritime Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 25(3), pages 731-743, June.
    14. Jason R. W. Merrick & Rene Van Dorp, 2006. "Speaking the Truth in Maritime Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 26(1), pages 223-237, February.
    15. Gino J. Lim & Jaeyoung Cho & Selim Bora & Taofeek Biobaku & Hamid Parsaei, 2018. "Models and computational algorithms for maritime risk analysis: a review," Annals of Operations Research, Springer, vol. 271(2), pages 765-786, December.
    16. Montewka, Jakub & Manderbacka, Teemu & Ruponen, Pekka & Tompuri, Markus & Gil, Mateusz & Hirdaris, Spyros, 2022. "Accident susceptibility index for a passenger ship-a framework and case study," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    17. Fang Wang & Weijie Du & Hongxiang Feng & Yun Ye & Manel Grifoll & Guiyun Liu & Pengjun Zheng, 2023. "Identification of Risk Influential Factors for Fishing Vessel Accidents Using Claims Data from Fishery Mutual Insurance Association," Sustainability, MDPI, vol. 15(18), pages 1-24, September.
    18. Liye Zhang & Hua Wang & Qiang Meng & Hongbin Xie, 2019. "Ship accident consequences and contributing factors analyses using ship accident investigation reports," Journal of Risk and Reliability, , vol. 233(1), pages 35-47, February.
    19. Wayne K. Talley & Di Jin & Hauke Kite-Powell, 2006. "Determinants of the severity of passenger vessel accidents," Maritime Policy & Management, Taylor & Francis Journals, vol. 33(2), pages 173-186, May.
    20. Jinfen Zhang & Ângelo P Teixeira & C. Guedes Soares & Xinping Yan & Kezhong Liu, 2016. "Maritime Transportation Risk Assessment of Tianjin Port with Bayesian Belief Networks," Risk Analysis, John Wiley & Sons, vol. 36(6), pages 1171-1187, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:29:y:2009:i:7:p:985-999. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.